Advertisement

Physics of Particles and Nuclei Letters

, Volume 11, Issue 7, pp 830–835 | Cite as

On the Gribov problem in Yang-Mills theory

  • Olaf LechtenfeldEmail author
Article

Abstract

I briefly review the Gribov ambiguity of Yang-Mills theory, some of its features and attempts to control it, in particular the Gribov-Zwanziger proposal to restrict the functional integration in the Landau gauge to the Gribov region. This proposal is extended to an arbitrary gauge in such a way as to guarantee BRST invariance. The key insight is that any gauge change in the generating functional can be effected by a suitable field-dependent BRST transformation. I derive a simple analytic formula for the Jacobian of such a transformation, which yields an explicit recipe for the required transformation-parameter functional and allows for the computation of the Gribov horizon functional in any gauge, as I illustrate for the class of R ξ gauges.

Keywords

Nucleus Letter Mill Theory Landau Gauge BRST Transformation Ghost Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Vandersickel and D. Zwanziger, “The Gribov problem and QCD dynamics,” Phys. Rept. 520, 175–251 (2012).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    V. N. Gribov, “Quantization of nonabelian gauge theories,” Nucl. Phys., Ser. B 139, 1–19 (1978).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. M. Singer, “Some remarks on the Gribov ambiguity,” Commun. Math. Phys. 60, 7–12 (1978).ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    P. M. Lavrov, O. Lechtenfeld, and A. A. Reshetnyak, “Is soft breaking of BRST symmetry consistent?,” J. High Energy Phys. 10, 043 (2011).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965).zbMATHGoogle Scholar
  6. 6.
    P. M. Lavrov and O. Lechtenfeld, Field-dependent BRST transformations in Yang-Mills theory, Phys. Lett., Ser. B 725, 382–385 (2013).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    P. M. Lavrov and O. Lechtenfeld, “Gribov horizon beyond the Landau gauge,” Phys. Lett., Ser. B 725, 386–388 (2013).ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. D. Joglekar and B. P. Mandal, “Finite field-dependent BRS transformations,” Phys. Rev., Ser. D 51, 1919–1928 (1995).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institut für Theoretische Physik and Riemann Center for Geometry and PhysicsLeibniz Universitat HannoverHannoverGermany

Personalised recommendations