Skip to main content
Log in

Nonaccelerator neutrino physics

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The subject of these lectures is experimental nonaccelerator neutrino physics. We discuss experiments on solar and atmospheric neutrino flux measurements, as well as experiments devoted to recording the antineutrino on nuclear reactors in the context of determining the parameters of neutrino oscillations. Neutrino geophysics, a new field of science, is overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. von Weizsacker, Phys. Zeitschr. 38, 176 (1937); Phys. Zeitschr. 39, 633 (1938).

    Google Scholar 

  2. H. A. Bethe and C. L. Critchfield, “The Formation of Deuterons by Proton Combination,” Phys. Rev. 54, 248–254 (1938).

    Article  ADS  Google Scholar 

  3. H. A. Bethe, “Energy Production in Stars,” Phys. Rev. 55, 434–456 (1939).

    Article  ADS  MATH  Google Scholar 

  4. G. Gamow and M. Schoenberg, “The Possible Role of Neutrinos in Stellar Evolution,” Phys. Rev. 58, 1117 (1940).

    Article  ADS  Google Scholar 

  5. G. Gamow and M. Schoenberg, “Neutrino Theory of Stellar Collapse,” Phys. Rev. 59, 539–547 (1941).

    Article  ADS  MATH  Google Scholar 

  6. R. Bonetti et al., “First Measurement of the 3He(3He,2p)4He Cross Section down to the Lower Edge of the Solar Gamow Peak,” Phys. Rev. Lett. 82, 5205 (1999); C. Casella et al., “First Measurement of the d(p,γ)3He Cross Section down to the Solar Gamow Peak,” Nucl. Phys. A 706, 203 (2002); G. Imbriani et al., “The Bottleneck of the CNO Burning and the Age of the Globular Clusters,” Astron. Astrophys. 420, 625 (2004); D. Bemmerer et al., “Low Energy Measurement of the 14N(p,γ)15O Total Cross Section at LUNA,” Nucl. Phys. A 779, 297 (2006); F. Confortola et al., “Astrophysical S-Factor of the 3He(α,γ) 7Be Reaction Measured at Low Energy Via Prompt and Delayed γ Detection,” Phys. Rev. C 75, 065803 (2007); F. Raiola et al., Phys. Lett. B 547, 193 (2002).

    Article  ADS  Google Scholar 

  7. M. Schwartzchild et al., Astrophys. J. 125, 233 (1957).

    Article  ADS  Google Scholar 

  8. M. Schwarzschild, Structure and Evolution of the Stars(Princeton Univ. Press, Princeton, 1958).

    Google Scholar 

  9. J. N. Bahcall, A. M. Serenelli, and S. Basu, Astrophys. J. 621, L85 (2005).

    Article  ADS  Google Scholar 

  10. J. N. Bahcall, Neutrino Astrophysics(Cambridge Univ. Press, Cambridge, 1989; Mir, Moscow, 1993).

    Google Scholar 

  11. R. Davis, Jr., “A Half-Century with Solar Neutrinos,” Nobel Lecture, in Les Prix Nobel 2002 (Nobel Foundation, Stockholm, 2003), pp. 59–79.

    Google Scholar 

  12. R. Davis, Jr., D. S. Harmer, and K. C. Hoffman, “Search for Neutrinos from the Sun,” Phys. Rev. Lett. 20, 1205 (1968).

    Article  ADS  Google Scholar 

  13. B. T. Cleveland, T. Daily, R. Davis, Jr., J. R. Distel, K. Lande, C. K. Lee, P. S. Wildenhain, and J. Ullman, “Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector,” Astrophys. J. 496, 505 (1998).

    Article  ADS  Google Scholar 

  14. J. N. Bahcall, M. H. Pinsonneault, and S. Basu, “Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties,” Astrophys. J. 555, 990 (2001).

    Article  ADS  Google Scholar 

  15. V. Gribov and B. Pontecorvo, “Neutrino Astronomy and Lepton Charge,” Phys. Lett. B 28, 493 (1969).

    Article  ADS  Google Scholar 

  16. L. Wolfenstein, “Neutrino Oscillations in Matter,” Phys. Rev. D: Part. Fields 17, 2369 (1978).

    Article  ADS  Google Scholar 

  17. S. P. Mikheev and A. Yu. Smirnov, “Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrino,” Sov. J. Nucl. Phys. 42, 913 (1985).

    Google Scholar 

  18. D. R. O. Morrison, “The Steady Vanishing of the Three Solar Neutrino Problems,” Phys. Usp. 38, 543 (1995).

    Article  ADS  Google Scholar 

  19. K. H. Heeger and R. G. H. Robertson, Phys. Rev. Lett. 77, 3720 (1996).

    Article  ADS  Google Scholar 

  20. K. S. Hirata, et al., “Search for Correlation of Neutrino Events with Solar Flares in Kamiokande,” Phys. Rev. Lett. 61, 2653–2656 (1988).

    Article  ADS  Google Scholar 

  21. K. S. Hirata et al., “Observation of 8B Solar Neutrinos in the Kamiokande-II Detector,” Phys. Rev. Lett. 63, 16–19 (1989).

    Article  ADS  Google Scholar 

  22. K. S. Hirata et al., “Real-Time, Directional Measurement of 8B Solar Neutrinos in the Kamiokande II Detector,” Phys. Rev. Lett. 65, 1297 (1990).

    Article  ADS  Google Scholar 

  23. Y. Fukuda et al. (KamiokaNDE Collab.), “Solar Neutrino Data Covering Solar Cycle 22,” Phys. Rev. Lett. 77, 1683–1686 (1996).

    Article  ADS  Google Scholar 

  24. http://physicsworld.com/cws/article/news/3446.

  25. K. Abe et al. (Super-KamiokaNDE Collab.), “Solar Neutrino Results in Super-Kamiokande-III,” Phys. Rev. D: Part. Fields 83, 052010 (2011).

    Article  ADS  Google Scholar 

  26. K. Abe et al., “Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam,” arXiv:1106.2822v2 [hep-ex] (2011).

  27. K. Abe et al., “Letter of Intent: The Hyper-Kamiokande Experiment Detector Design and Physics Potential,” arXiv:1109.3262v1 [hep-ex] (2011).

  28. T. Kajita and Y. Totsuka, “Observation of Atmospheric Neutrinos,” Rev. Mod. Phys. 73, 85–118 (2001).

    Article  ADS  Google Scholar 

  29. K. S. Hirata et al. (KamiokaNDE Collab.), “Experimental Study of the Atmospheric Neutrino Flux,” Phys. Lett. B 205, 416–420 (1988).

    Article  ADS  Google Scholar 

  30. K. S. Hirata et al. (KamiokaNDE Collab.), “Observation of a Small Atmospheric νμe Ratio in Kamiokande,” Phys. Lett. B 280, 146–152 (1992).

    Article  ADS  Google Scholar 

  31. Y. Fukuda et al. (KamiokaNDE Collab.), “Atmospheric νμe Ratio in the Multi-GeV Energy Range,” Phys. Lett. B 335, 237–245 (1994).

    Article  ADS  Google Scholar 

  32. D. Casper et al. (IMB Collab.), “Measurement of Atmospheric Neutrino Composition with the IMB-3 Detector,” Phys. Rev. Lett. 66, 2561 (1991).

    Article  ADS  Google Scholar 

  33. R. Becker-Szendy, et al., “Electron and Muon-Neutrino Content of the Atmospheric Flux,” Phys. Rev. D: Part. Fields 46, 3720–3724 (1992).

    Article  ADS  Google Scholar 

  34. Ch. Berger et al. (Fréjus Collab.), Phys. Lett. B 227, 489 (1989); K. Daum (Fréjus Collab.), “Determination of the Atmospheric Neutrino Spectra with the Fréjus Detector,” Z. Phys. C 66, 417–428 (1995).

    Article  ADS  Google Scholar 

  35. M. Aglietta et al., “The NUSEX, Experimental Study of Atmospheric Neutrino Flux in the NUSEX Experiment,” Europhys. Lett. 8, 611–614 (1989).

    Article  Google Scholar 

  36. S. Mikheyev (Baksan Collab.), in Proceedings of the 5th TAUP Workshop, Gran Sasso, Italy, 1997.

  37. W. W. M. Allison et al., “Measurement of the Atmospheric Neutrino Flavor Composition in Soudan-2,” Phys. Lett. B 391, 491 (1997).

    Article  ADS  Google Scholar 

  38. S. Ahlen et al. (MACRO Collab.), “Atmospheric Neutrino Flux Measurement Using Upgoing Muons,” Phys. Lett. B 357, 481 (1995).

    Article  ADS  Google Scholar 

  39. Y. Fukuda et al. (Super-Kamiokande Collab.), “Evidence for Oscillation of Atmospheric Neutrinos,” Phys. Rev. Lett. 81, 1562–1567 (1998).

    Article  ADS  Google Scholar 

  40. Y. Fukuda et al. (Super-Kamiokande Collab.), “Measurement of the Flux and Zenith-Angle Distribution of Upward Throughgoing Muons by Super-Kamiokande,” Phys. Rev. Lett. 82, 2644–2648 (1999).

    Article  ADS  Google Scholar 

  41. Y. Ashie et al. (Super-Kamiokande Collab.), “Evidence for an Oscillatory Signature in Atmospheric Neutrino Oscillations,” Phys. Rev. Lett. 93, 101801 (2004).

    Article  ADS  Google Scholar 

  42. Y. Ashie et al. (Super-Kamiokande Collab.), “Three Flavor Neutrino Oscillation Analysis of Atmospheric Neutrinos in Super-Kamiokande,” Phys. Rev. Lett. 93, 101801 (2004).

    Article  ADS  Google Scholar 

  43. V. A. Kuz’min, Sov. Phys. JETP 22, 1051 (1966).

    ADS  Google Scholar 

  44. www.sno.phy.queensu.ca/sno/first_results/

  45. B. Aharmim et al. (SNO Collab.), “Determination of the νe and Total 8B Solar Neutrino Fluxes Using the Sudbury Neutrino Observatory Phase I Data Set,” Phys. Rev. C 75, 045502 (2007).

    Article  ADS  Google Scholar 

  46. B. Aharmim et al. (SNO Collab.), “Electron Energy Spectra, Fluxes, and Day-Night Asymmetries of 8B Solar Neutrinos from Measurements with NaCl Dissolved in the Heavy-Water Detector at the Sudbury Neutrino Observatory,” Phys. Rev. C 72, 055502 (2005).

    Article  ADS  Google Scholar 

  47. B. Aharmim et al. (SNO Collab.), “Independent Measurement of the Total Active 8B Solar Neutrino Flux Using an Array of 3He Proportional Counters at the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 101, 111301 (2008).

    Article  ADS  Google Scholar 

  48. B. Aharmim et al. (SNO Collab.), “Low-Energy-Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory,” Phys. Rev. C 81 055504 (2010).

    Google Scholar 

  49. R. S. Raghavan and S. Pakvasa, “Probing the Nature of the Neutrino: The Boron Solar-Neutrino Experiment,” Phys. Rev. D: Part. Fields 37, 849–857 (1988).

    Article  ADS  Google Scholar 

  50. G. Alimonti et al. (Borexino Collab.), “A Large Scale Low-Background Liquid Scintillator Detector: The Counting Test Facility at Gran Sasso,” Nucl. Instrum. Methods Phys. Res. A 406, 411–426 (1998).

    Article  ADS  Google Scholar 

  51. G. Alimonti et al. (Borexino Collab.), “Ultra-Low Background Measurements in a Large Volume Underground Experiment,” Astropart. Phys. 8, 141–157 (1998).

    Article  ADS  Google Scholar 

  52. A. V. Derbin, O. Yu. Smirnov, and O. A. Zaimidoroga, “Non-Accelerator Experiments on the Search for Rare Processes with Low-Background Detectors,” Phys. Part. Nucl. 36, 314 (2005).

    Google Scholar 

  53. G. Belini et al. (Borexino Collab.), “First Real Time Detection of 7Be Solar Neutrinos by Borexino,” Phys. Lett. B 658, 101–108 (2008).

    Article  ADS  Google Scholar 

  54. C. Arpesella et al. (Borexino Collab.), “Direct Measurement of the 7Be Solar Neutrino Flux with 192 Days of Borexino Data,” Phys. Rev. Lett. 101, 091302 (2008).

    Article  ADS  Google Scholar 

  55. G. Belini et al. (Borexino Collab.), “Precision Measurement of the 7Be Solar Neutrino Interaction Rate in Borexino,” Phys. Rev. Lett. 107, 141302 (2011).

    Article  ADS  Google Scholar 

  56. G. Belini et al. (Borexino Collab.), “Measurement of the Solar 8B Neutrino Rate with a Liquid Scintillator Target and 3 MeV Energy Threshold in the Borexino Detector,” Phys. Rev. C 81, 034602 (2010).

    Article  Google Scholar 

  57. G. Belini et al. (Borexino Collab.), “First Evidence of pep Solar Neutrinos by Direct Detection in Borexino,” Phys. Rev. Lett. 108, 051302 (2012).

    Article  ADS  Google Scholar 

  58. H. Back et al. (Borexino Collab.), “CNO and Pep Neutrino Spectroscopy in Borexino: Measurement of the Deep-Underground Production of Cosmogenic 11C in an Organic Liquid Scintillator,” Phys. Rev. C 74, 045805 (2006).

    Article  ADS  Google Scholar 

  59. G. Belini et al. (Borexino Collab.), “Absence of Day/Night Asymmetry of 862 keV 7Be Solar Neutrino Rate in Borexino and MSW Oscillation Parameters,” arXiv:1104.2150v1 [hep-ex].

  60. A. Th. Shaun, B. A. Filipe, and L. Ofer, “Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey,” Phys. Rev. Lett. 105, 031301 (2010).

    Article  Google Scholar 

  61. J. Bonn, B. Bornschein, L. Bornschein, et al., “Results from the Mainz Neutrino Mass Experiment,” Progress Part. Nucl. Phys. 48, 133–139 (2002); Ch. Kraus, L. Bornschein, J. Bonn, et al., “The Mainz Neutrino Mass Experiment,” Nucl. Phys. B Proc. Suppl. 143, 499 (2005).

    Article  ADS  Google Scholar 

  62. J. N. Bahcall, Neutrino Astrophysics(Cambridge Univ. Press, Cambridge, 1989); G. G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. of Chicago Press, Chicago, 1996).

    Google Scholar 

  63. G. Ranucci, “Likelihood Scan of the Super-Kamiokande I Time Series Data,” Phys. Rev. D: Part. Fields 73, 103003 (2006).

    Article  ADS  Google Scholar 

  64. P. A. Sturrock and J. D. Scargle, “False-Alarm Probability in Relation to Oversampled Power Spectra, with Application to Super-KamiokaNDE Solar Neutrino Data,” Astrophys. J. 718, 527 (2010).

    Article  ADS  Google Scholar 

  65. G. G. Raffelt, “New Bound on Neutrino Dipole Moments from Globular-Cluster Stars,” Phys. Rev. Lett. 64, 2856–2858 (1990); G. G. Raffelt, “Limits on Neutrino Electromagnetic Properties - An Update,” Phys. Rep. 320, 319–327 (1999).

    Article  ADS  Google Scholar 

  66. A. Ayala, J. C. D’Olivo, and M. Torres, “Bound on the Neutrino Magnetic Moment from Chirality Flip in Supernovae,” Phys. Rev. D: Part. Fields 59, 111901(R) (1999).

    Article  ADS  Google Scholar 

  67. D. W. Liu et al. (SuperKamiokande Collab.), “Limit On the Neutrino Magnetic Moment Using 1496 Days of Super-Kamiokande-I Solar Neutrino Data,” Phys. Rev. Lett. 93, 021802 (2004).

    Article  ADS  Google Scholar 

  68. K. Eguchi et al. (KamLAND Collab.), “High Sensitivity Search for νe’s from the Sun and Other Sources at KamLAND,” Phys. Rev. Lett. 92, 071301 (2004).

    Article  ADS  Google Scholar 

  69. G. Belini et al. (Borexino Collab.), “Study of Solar and Other Unknown Anti-Neutrino Fluxes with Borexino at LNGS,” Phys. Lett. B 696, 191–196 (2011).

    Article  ADS  Google Scholar 

  70. A. Gando et al. (KamLAND Collab.), “Search for Extraterrestrial Antineutrino Sources with the Kam-LAND Detector,” Astrophys. J. 745, 193 (2012).

    Article  ADS  Google Scholar 

  71. K. Ch. Wang, “A Suggestion on the Detection of the Neutrino,” Phys. Rev. 61, 97 (1942).

    Article  ADS  Google Scholar 

  72. P. B. Smith and J. S. Allen, “Nuclear Recoils Resulting from the Decay of Be7,” Phys. Rev. 81, 381 (1951).

    Article  ADS  Google Scholar 

  73. R. Davis, Jr., “Nuclear Recoil Following Neutrino Emission from Beryllium 7,” Phys. Rev. 86, 976 (1952).

    Article  ADS  Google Scholar 

  74. “The Reines-Cowan Experiments: Detecting the Poltergeist,” Los Alamos Sci. 25, 3 (1997). http://library.lanl.gov/cgi-bin/getfile?25-02.pdf

  75. F. Reines and C. L. Cowan, “A Proposed Experiment to Detect the Free Neutrino,” Phys. Rev. 90, 49 (1953); C. L. Cowan, F. Reines, F. B. Harrison, E. C. Andrson, and F. N. Hayes, “Large Liquid Scintillation Detectors,” Phys. Rev. 90, 493–494 (1953).

    Article  ADS  Google Scholar 

  76. C. L. Cowan, F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, “Detection of the Free Neutrino: A Confirmation,” Science 124, 103–104 (1956); F. Reines and C. L. Cowan, “Neutrino Physics,” Phys. Today 10, 18 (1957); F. Reines and C. L. Cowan, “The Neutrino,” Nature 178, 446–449 (1956).

    Article  ADS  Google Scholar 

  77. R. Davis, Jr., “An Attempt To Observe the Capture of Reactor Neutrinos in Chlorine-37,” in Proceedings of the 1st UNESCO Conference (Paris, 1958), Vol. 1, p. 728.

  78. P. Adamson et al. (MINOS Collab.), Phys. Rev. Lett. 106, 181801 (2011).

    Article  ADS  Google Scholar 

  79. B. Achkar et al., Nucl. Phys. B 434, 503 (1995).

    Article  ADS  Google Scholar 

  80. M. Apollonio et al., Eur. Phys. J. C 27, 331 (2003).

    Article  ADS  Google Scholar 

  81. K. Eguchi et al. (KamLAND Collab.), “First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance,” Phys. Rev. Lett. 90, 021802 (2003).

    Article  ADS  Google Scholar 

  82. T. Araki et al. (KamLAND Collab.), “Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion,” Phys. Rev. Lett. 94, 081801 (2005).

    Article  ADS  Google Scholar 

  83. S. Abe et al. (KamLAND Collab.), “Precision Measurement of Neutrino Oscillation Parameters with KamLAND,” Phys. Rev. Lett. 100, 221803 (2008).

    Article  ADS  Google Scholar 

  84. A. Gando et al. (KamLAND Collab.), “Constraints on Θ13 from a Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND,” Phys. Rev. D: Part. Fields, 83, 052002 (2011).

    Article  ADS  Google Scholar 

  85. A. I. Derbin, A. V. Chernyi, L. A. Popeko, V. N. Muratova, G. A. Shishkina, S. I. Bakhlanov, A. I. Derbin, A. V. Chernyi, L. A. Popeko, V. N. Muratova, G. A. Shishkina, and S. I. Bakhlanov, “Experiment on Anti-Neutrino Scattering by Electrons at a Reactor of the Rovno Nuclear Power Plant,” JETP Lett. 57, 768 (1993); A. V. Derbin, Phys. At. Nucl. 57, 236 (1994).

    ADS  Google Scholar 

  86. H. B. Li et al., Phys. Rev. Lett. 90, 131802 (2003).

    Article  ADS  Google Scholar 

  87. Z. Daraktchieva et al., “Limits on the Neutrino Magnetic Moment from the MUNU Experiment,” Phys. Lett. B 564, 190 (2003).

    Article  ADS  Google Scholar 

  88. Z. Daraktchieva et al., “Final Results on the Neutrino Magnetic Moment from the MUNU Experiment,” Phys. Lett. B 615, 153 (2005).

    Article  ADS  Google Scholar 

  89. C. L. Cowan and F. Reines, Phys. Rev. 107, 528 (1957).

    Article  ADS  Google Scholar 

  90. A. G. Beda, V. B. Brudanin, V. G. Egorov, D. V. Medvedev, M. V. Shirchenko, and A. S. Starostin, “Gemma Experiment: Three Years of the Search for the Neutrino Magnetic Moment,” Phys. Part. Nucl. Lett. 7, 406–409 (2010).

    Article  Google Scholar 

  91. G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, “Reactor Antineutrino Anomaly,” Phys. Rev. D: Part. Fields 83, 073006 (2011).

    Article  ADS  Google Scholar 

  92. Y. Abe et al. (Double Chooz Collab.), “Indication for the Disappearance of Reactor νe in the Double Chooz Experiment,” arXiv:1112.6353v2 [hep-ex] (2012).

  93. F. Ardellier (Double Chooz Collab.), “A Search for the Neutrino Mixing Angle Θ13,” arXiv:hep-ex/0606025v4 (2006).

  94. Daya Bay Collab., “A Precision Measurement of the Neutrino Mixing Angle Θ13 Using Reactor Antineutrinos at Daya Bay,” arXiv:hep-ex/0701029v1 (2007).

  95. J. K. Ahn et al. (RENO Collab.), “RENO: An Experiment for Neutrino Oscillation Parameter Θ13 Using Reactor Neutrinos at Yonggwang,” arXiv:1003.1391v1 [hep-ex] (2010).

  96. http://snews.bnl.gov/

  97. F. von Feilitzsch, “LENA: status and prospects,” in Neutrino Geoscience 2010. http://geoscience.lngs.infn.it/Program/Pdf-presentations/Feilitzsch.pdf

  98. C. Patterson, “Age of Meteorites and the Earth,” Geochim. Cosmochim. Acta 10, 230–237 (1956).

    Article  ADS  Google Scholar 

  99. T. Lay, J. Hernlund, and B. A. Buffett, “Core Mantle Boundary Heat Flow,” Nature Geosci. 1, 25–32 (2008).

    Article  ADS  Google Scholar 

  100. A. M. Hofmeister and R. E. Criss, “Earth’s Heat Flux Revised and Linked to Chemistry,” Tectonophysics 395, 159–177 (2005).

    Article  ADS  Google Scholar 

  101. Yu. V. Petrov, “The Oklo Natural Nuclear Reactor,” Sov. Phys. Usp. 20, 937 (1977).

    Article  ADS  Google Scholar 

  102. F. Mantovani, L. Carmignani, G. Fiorentini, and M. Lissia, Phys. Rev. D: Part. Fields 69, 013001 (2004).

    Article  ADS  Google Scholar 

  103. S. Enomoto, E. Ohtani, K. Inoue, and A. Suzuki, Earth Planet. Sci. Lett. 258, 147 (2007).

    Article  ADS  Google Scholar 

  104. L. Fogli, E. Lisi, A. Palazzo, and A. M. Rotunno, Earth Moon Planets 99, 111 (2006).

    Article  ADS  Google Scholar 

  105. S. T. Dye, Earth Planet. Sci. Lett. 297, 1 (2010).

    Article  ADS  Google Scholar 

  106. C. Bassin, G. Laske, and G. Masters, EOS Trans. AGU 81, F897 (2000); G. Laske, G. Masters, and C. Reif, “Crust 2.0 a New Global Crustal Model at 2 × 2 Degrees” (2001). http://igppweb.ucsd.edu/gabi/crust2.html

    Google Scholar 

  107. A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Inter. 25, 297 (1981).

    Article  ADS  Google Scholar 

  108. G. Fiorentini, M. Lissia, and F. Mantovani, Phys. Rep. 453, 117 (2007).

    Article  ADS  Google Scholar 

  109. K. Inoue, “New Geo-Neutrino Measurement with KamLAND,” in Proceedings of the Neutrino-2010 Conference. http://www.neutrino2010.gr/

  110. T. Araki et al. (KamLAND Collab.), Nature 436, 499 (2005).

    Article  ADS  Google Scholar 

  111. T. Araki et al. (KamLAND Collab.), Phys. Rev. Lett. 100, 221803 (2008).

    Article  ADS  Google Scholar 

  112. G. Bellini et al. (Borexino Collab.), Phys. Lett. B 687, 299 (2010).

    Article  ADS  Google Scholar 

  113. A. Gando et al. (Kamland Collab.), “Partial Radiogenic Heat Model for Earth Revealed by Geoneutrino Measurements,” Nature Geosci. 4, 647–651 (2011).

    Article  ADS  Google Scholar 

  114. M. Chen, “SNO+: Status and Prospects,” in Neutrino Geoscience 2010. http://geoscience.lngs.infn.it/Program/Pdf-presentations/Chen.pdf

  115. J. Learned, “Towards Hanohano,” in Neutrino Geoscience 2010. http://geoscience.lngs.infn.it/Program/Pdf-presentations/Learned.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Smirnov.

Additional information

Original Russian Text © O.Yu. Smirnov, 2012, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, O.Y. Nonaccelerator neutrino physics. Phys. Part. Nuclei Lett. 9, 696–732 (2012). https://doi.org/10.1134/S1547477112070163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112070163

Keywords

Navigation