Physics of Particles and Nuclei Letters

, Volume 9, Issue 9–10, pp 733–744 | Cite as

Isolated neutron stars and studies of their interiors

Article

Abstract

In these lectures presented at Baikal summer school on physics of elementary particles and astrophysics 2011, I present a wide view of neutron star astrophysics with special attention paid to young isolated compact objects and studies of the properties of their interiors using astronomical methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau, “On the Theory of Stars,” Phys. Z. Sowjetunion 1, 285–288 (1932).MATHGoogle Scholar
  2. 2.
    P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1. Equation of State and Structure (Kluwer Academic, Boston, Dordrecht,London, 2007).Google Scholar
  3. 3.
    W. Baade and F. Zwicky, “Cosmic Rays from Super-Novae,” Publ. Nat. Acad. Sci. 20, 259–263 (1934).ADSCrossRefGoogle Scholar
  4. 4.
    R. C. Tolman, “Static Solutions of Einstein Field Equations for Spheres of Fluid,” Phys. Rev. 55, 364–373 (1939).ADSCrossRefGoogle Scholar
  5. 5.
    J. R. Oppenheimer and G. M. Volkoff, “On Massive Neutron Cores,” Phys. Rev. 55, 374–381 (1939).ADSMATHCrossRefGoogle Scholar
  6. 6.
    A. B. Migdal, “Superfluidity and the Moments of Inertia of Nuclei,” Nucl. Phys. 13, 655–674 (1959).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    V. L. Ginzburg, “Magnetic Fields of Collapsing Masses and the Nature of Superstars,” Sov. Phys. Dokl. 9, 329 (1964).ADSGoogle Scholar
  8. 8.
    N. S. Kardashev, “Magnetic Collapse and the Nature of Powerful Sources of Cosmic Radio Emission,” Sov. Astron. 8, 643 (1964).ADSGoogle Scholar
  9. 9.
    S. Tsuruta and A. G. W. Cameron, “Cooling and Detectability of Neutron Stars,” Canad. J. Phys. 44, 1863–1894 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    D. C. Morton, “Neutron Stars As X-Ray Sources,” Nature 201, 1308–1309 (1964).ADSCrossRefGoogle Scholar
  11. 11.
    H.-Ye. Chiu and E. E. Salpeter, “Surface X-Ray Emission from Neutron Stars,” Phys. Rev. Lett. 12, 413–415 (1964).ADSCrossRefGoogle Scholar
  12. 12.
    R. Giacconi, H. Gursky, F. R. Paolini, and B. Rossi, “Evidence for X-Rays from Sources Outside the Solar System,” Phys. Rev. Lett. 9, 439–443 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, “Observation of a Rapidly Rotating Radio Source,” Nature 217, 709–713 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    F. Pacini, “Energy Emission from a Neutron Star,” Nature 216, 567–568 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    S. Mereghetti, “X-Ray Emission from Isolated Neutron Stars,” in High-Energy Emission from Pulsars and their Systems Astrophys, Space Sci. Proc. (Springer-Verlag, Berlin, Heidelberg, 2010), pp. 345–362.Google Scholar
  16. 16.
    R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, “The Australia Telescope National Facility Pulsar Catalogue,” Astron. J. 129, 1993–2006 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    P. M. Saz Parkinson, “Status and Prospects of Fermi LAT Pulsar Blind Searches,” arXiv:1101.3096.Google Scholar
  18. 18.
    V. S. Beskin, “Radio Pulsars,” Phys. Usp. 42, 1071–1098 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    M. A. McLaughlin et al., “Transient Radio Bursts from Rotating Neutron Stars,” Nature 439, 817–820 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    E. F. Keane and M. A. McLaughlin, “Rotating Radio Transient,” Bull. Astr. Soc. India 39, 1–20 (2011).Google Scholar
  21. 21.
    S. P. Reynolds et al., “Discovery of the X-Ray Counter-part to the Rotating Radio Transient J1819-1458,” Astrophys. J. 639, L71-L74 (2006).Google Scholar
  22. 22.
    A. G. Lyne et al., “Unusual Glitch Activity in the RRAT J1819-1458: An Exhausted Magnetar?,” Mon. Not. R. Astron. Soc. 400, 1439–1444 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    I. Tuohy and G. Garmire, “Discovery of a Compact X-Ray Source at the Center of the Supernova Remnant RCW 103,” Astrophys. J. 239, L107–L110 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    E. V. Gotthelf and G. Vasisht, “A New View on Young Pulsars in Supernova Remnants: Slow Radio-Quiet & X-Ray Bright,” in Pulsar Astronomy-2000 and Beyond, Proceedings of the 177th IAU Coll., Ed. by M. Kramer, N. Wex, and N. Wielebinski, ASP Conf. Ser. 202, 699–703 (2000).Google Scholar
  25. 25.
    G. G. Pavlov, D. Sanwal, and M. A. Teter, “Central Compact Objects in Supernova Remnants,” in Young Neutron Stars and Their Environments, PRoceedings of the IAU Symposium No. 218, Ed. by F. Camilo and B. M. Gaensler (Astron. Soc. Pacific, San Francisco, 2004), pp. 239–246.Google Scholar
  26. 26.
    J. P. Halpern and E. V. Gotthelf, “Spin-Down Measurement of PSR J1852N in Kesteven 79: Central Compact Objects As Anti-Magnetars,” Astrophys. J. 709, 436–446 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    V. F. Shvartsman, “Two Generations of Pulsars,” Radiophys. Quant. Electron. 13, 1428–1440 (1970).ADSCrossRefGoogle Scholar
  28. 28.
    J. P. Ostriker, M. J. Rees, and J. Silk, “Some Observable Consequences of Accretion by Defunct Pulsars,” Astrophys. Lett. 6, 179 (1970).ADSGoogle Scholar
  29. 29.
    F. Walter et al., “Discovery of a Nearby Isolated Neutron Star,” Nature 379, 233–235 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    F. Haberl, “The Magnificent Seven: Magnetic Fields and Surface Temperature Distributions,” Astrophys. Space Sci. 308, 181–190 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    R. Turolla, “Isolated Neutron Stars: The Challenge of Simplicity,” in Neutron Stars and Pulsars, Astrophysics and Space Science Library, Vol. 357 (Springer, 2009), pp. 141–163.Google Scholar
  32. 32.
    D. L. Kaplan and M. H. van Kerkwijk, “Constraining the Spin-Down of the Nearby Isolated Neutron Star RX J0806.4-4123, and Implications for the Population of Nearby Neutron Stars,” Astrophys. J. 705, 798–808 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    V. I. Kondratiev et al., “New Limits on Radio Emission from X-Ray Dim Isolated Neutron Stars,” Astrophys. J. 702, 692–706 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    A. M. Pires, C. Motch, R. Turolla, A. Treves, and S. B. Popov, “The Isolated Neutron Star Candidate 2XMM J104608.7-594306,” Astron. Astrophys. 498, 233–240 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    A. M. Pires et al., “First Dedicated Observations of the Isolated Neutron Star in the Carina Nebula,” Presentation of the Conference on The X-Ray Universe 2011, 27–30 June, 2011, Berlin, Germany (2011), id. 129.Google Scholar
  36. 36.
    R. C. Duncan and C. Thompson, “Formation of Very Strongly Magnetized Neutron Stars — Implications for Gamma-Ray Bursts,” Astrophys. J. Lett. 392, L9–L13 (1992).ADSCrossRefGoogle Scholar
  37. 37.
    E. P. Mazets et al., “Observations of a Flaring X-Ray Pulsar in Dorado,” Nature 282, 587–589 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    G. Vedrenne et al., “Observations of the X-Ray Burster 0525.9-66.1,” Sov. Astron. Lett. 5, 314–317 (1979).ADSGoogle Scholar
  39. 39.
    N. Rea and P. Esposito, “Magnetar Outbursts: An Observational Review,” in High-Energy Emission from Pulsars and their Systems, Astrophysics and Space Science Proceedings (Springer-Verlag, Berlin, Heidelberg, 2011), pp. 247–280.CrossRefGoogle Scholar
  40. 40.
    S. Mereghetti, “The Strongest Cosmic Magnets: Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars,” Astron. Astrophys. Rev. 15, 225–287 (2008).ADSCrossRefGoogle Scholar
  41. 41.
    H. S. Kumar and S. Safi-Harb, “Variability of the High Magnetic Field X-Ray Pulsar PSR J1846-0258 Associated with the Supernova Remnant Kes 75 as Revealed by the Chandra X-Ray Observatory,” Astrophys. J. 678, L43–L46 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    F. P. Gavriil et al., “Magnetar-Like Emission from the Young Pulsar in Kes 75,” Science 318, 1802 (2008).ADSCrossRefGoogle Scholar
  43. 43.
    L. Levin, “A Radio-Loud Magnetar in X-Ray Quiescence,” Astrophys. J. 721, L33-L37 (2010).Google Scholar
  44. 44.
    N. Rea et al., “A Low-Magnetic-Field Soft Gamma Repeater,” Science 330, 944 (2010).ADSCrossRefGoogle Scholar
  45. 45.
    R. E. Rutledge, D. B. Fox, and A. H. Shevchuk, “Discovery of an Isolated Compact Object at High Galactic Latitude,” Astrophys. J. 672, 1137–1143 (2008).ADSCrossRefGoogle Scholar
  46. 46.
    S. Zane et al., “Discovery of 59 ms Pulsations from 1RXS J141256.0+792204 (Calvera),” Mon. Not. R. Astron. Soc. 410, 2428–2445 (2010).ADSCrossRefGoogle Scholar
  47. 47.
    K. A. Postnov and L. R. Yungelson, “The Evolution of Compact Binary Star Systems,” Living Rev. Rel. 9, 6 (2006).Google Scholar
  48. 48.
    D. Lorimer, “Binary and Millisecond Pulsars,” Living Rev. Rel. 11, 8 (2008).Google Scholar
  49. 49.
    D. G. Yakovlev, K. P. Levenfish, and O. Y. Gnedin, “Pycnonuclear Reactions in Dense Stellar Matter,” Eur. Phys. J. A 25, 669–672 (2005).CrossRefGoogle Scholar
  50. 50.
    A. L. Watts, “Neutron Starquakes and the Dynamic Crust,” arXiv:1111.0514.Google Scholar
  51. 51.
    B. Kiziltan, A. Kottas, and S. E. Thorsett, “The Neutron Star Mass Distribution,” arXiv:1011.4291.Google Scholar
  52. 52.
    P. B. Demorest et al., “A Two-Solar-Mass Neutron Star Measured Using Shapiro Delay,” Nature 467, 1081–1083 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    J. M. Lattimer and M. Prakash, “What a Two Solar Mass Neutron Star Really Means,” arXiv:1012.3208.Google Scholar
  54. 54.
    M. H. van Kerkwijk, R. P. Breton, and S. R. Kulkarni, “Evidence for a Massive Neutron Star from a Radial-velocity Study of the Companion to the Black-widow Pulsar PSR B1957O,” Astrophys. J. 728, id. 95 (2011).Google Scholar
  55. 55.
    E. M. Cackett et al., “Relativistic Lines and Reflection from the Inner Accretion Disks Around Neutron Stars,” Astrophys. J. 720, 205–225 (2010).ADSCrossRefGoogle Scholar
  56. 56.
    M. Y. Fujimoto and M. Gottwald, “An Indication of the Eddington Luminosity During X-Ray Bursts and Constraints on the Mass and Radius of Neutron Stars in 4U 1608-52 and MXB 1728-34,” Mon. Not. R. Astron. Soc. 236, 545–557 (1989).ADSGoogle Scholar
  57. 57.
    F. Ozel, “Soft Equations of State for Neutron-Star Matter Ruled Out by EXO 0748 — 676,” Nature 441, 1115–1117 (2006).ADSCrossRefGoogle Scholar
  58. 58.
    V. Suleimanov, J. Poutanen, M. Revnivtsev, and K. Werner, “Neutron Star Stiff Equation of State Derived from Cooling Phases of the X-Ray Burster 4U 1724-307,” arXiv:1004.4871.Google Scholar
  59. 59.
    A. W. Steiner, J. M. Lattimer, and E. F. Brown, “The Equation of State from Observed Masses and Radii of Neutron Stars,” Astrophys. J. 722, 33–54 (2010).ADSCrossRefGoogle Scholar
  60. 60.
    D. G. Yakovlev and C. J. Pethick, “Neutron Star Cooling,” Ann. Rev. Astron. Astrophys. 42, 169–210 (2004).ADSCrossRefGoogle Scholar
  61. 61.
    D. G. Yakovlev, K. P. Levenfish, and Y. A. Shibanov, “Cooling of Neutron Stars and Superfluidity in Their Cores,” Phys. Usp. 42, 737–778 (1999).ADSCrossRefGoogle Scholar
  62. 62.
    C. O. Heinke and W. C. G. Ho, “Direct Observation of the Cooling of the Cassiopeia A Neutron Star,” Astrophys. J. Lett. 719, L167–L171 (2010).ADSCrossRefGoogle Scholar
  63. 63.
    P. S. Shternin et al., “Cooling Neutron Star in the Cassiopeia A Supernova Remnant: Evidence for Superfluidity in the Core,” Mon. Not. R. Astron. Soc. 412, L108–L112 (2011).ADSCrossRefGoogle Scholar
  64. 64.
    D. Page, M. Prakash, J. M. Lattimer, and A. W. Steiner, “Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter,” Phys. Rev. Lett. 106, id.081101 (2011).Google Scholar
  65. 65.
    P. Haensel and J. L. Zdunik, “Models of Crustal Heating in Accreting Neutron Stars,” Astron. Astrophys. 480, 459–464 (2008).ADSCrossRefGoogle Scholar
  66. 66.
    V. Zavlin, “Thermal Emission from Isolated Neutron Stars: Theoretical and Observational Aspects,” astro-ph/0702426.Google Scholar
  67. 67.
    W. C. G. Ho and C. O. Heinke, “A Neutron Star with a Carbon Atmosphere in the Cassiopeia A Supernova Remnant,” Nature 462, 71–73 (2009).ADSCrossRefGoogle Scholar
  68. 68.
    R. Turolla, S. Zane, and J. J. Drake, “Bare Quark Stars or Naked Neutron Stars? The Case of RX J1856.5-3754,” Astrophys. J. 603, 265–282 (2004).ADSCrossRefGoogle Scholar
  69. 69.
    J. A. Pons, B. Link, J. A. Miralles, and U. Geppert, “Evidence for Heating of Neutron Stars by Magnetic-Field Decay,” Phys. Rev. Lett. 98, id.071101 (2007).Google Scholar
  70. 70.
    S. B. Popov et al., “Population Synthesis Studies of Isolated Neutron Stars with Magnetic Field Decay,” Mon. Not. R. Astron. Soc. 401, 2675–2686 (2010).ADSCrossRefGoogle Scholar
  71. 71.
    S. B. Popov and M. E. Prokhorov, “Population Synthesis in Astrophysics,” Phys. Usp. 50, 1123–1146 (2007).ADSCrossRefGoogle Scholar
  72. 72.
    V. M. Kaspi, “Grand Unification of Neutron Stars,” Publ. Nat. Acad. Sci. 107, 7147–7152 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations