Advertisement

Physics of Particles and Nuclei Letters

, Volume 9, Issue 2, pp 150–162 | Cite as

Computation of single-cell superconducting niobium cavity for accelerator of electrons and positrons

  • N. S. Azaryan
  • M. A. Baturitsky
  • Yu. A. Budagov
  • V. V. Glagolev
  • D. L. Demin
  • I. N. Kizhlai
  • S. V. Kolosov
  • A. A. Kurayev
  • T. L. Popkova
  • A. O. Rak
  • A. K. Sinitsyn
  • G. V. Trubnikov
  • G. D. Shirkov
Physics and Technique of Accelerators

Abstract

Computations of the accelerator section of the International Linear Collider (ILC), which consists of superconducting niobium cavities, are performed for conditions of the maximum energy transfer to electrons that travel along the cavity axis. A mathematical model and software packages are created for the computation of the electric characteristics and profile of a single-cell cavity. A computer-based synthesis of the cavity shape that yields the required electric characteristics is performed. The promising design variants of a single-cell cavity, with which a quality factor of 1010 is provided at a working frequency of 1.3 GHz, are found to optimize the construction and manufacture of a single-cell cavity. The electric characteristics of a chain of single-cell cavities are computed.

Keywords

Quality Factor Galerkin Method Nucleus Letter Drift Tube International Linear Collider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The International Linear Collider. Gateway to Quantum Universe. Draft. 2007. Global Design Effort. http://www.linearcollider.org.
  2. 2.
    G. V. Trubnikov et al., International Linear Collider, Ed. by A. N. Sissakian and G. D. Shirkov (JINR, Dubna, 2008) [in Russian].Google Scholar
  3. 3.
    A. N. Didenko, L. M. Sevryukova, and A. A. Yatis, Superconducting Accelerating Microwave Systems (Energoizdat, Moscow, 1981) [in Russian].Google Scholar
  4. 4.
    A. N. Didenko, Superconducting Waveguides and Cavities (Sov. radio, Moscow, 1973) [in Russian].Google Scholar
  5. 5.
    F. F. Mende, I. N. Bondarenko, and A. V. Trubitsyn, Superconducting and Cooled Resonant Systems (Nauk. Dumka, Kiev, 1976) [in Russian].Google Scholar
  6. 6.
    V. F. Kravchenko, Electrodynamics of Superconducting Structures (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  7. 7.
    H. Podlech, “Status and the Development of the Superconducting CH-Structure,” Presentation of the Report on HIPPI Meeting, 29 Sept.–1 Oct. 2004, Frankfurt, Germany.Google Scholar
  8. 8.
    Handbook of Accelerator Physics and Engineering, Ed. A. W. Chao and M. Tigner (World Sci., Singapore, 1999), p. 679.Google Scholar
  9. 9.
    A. A. Kurayev, T. L. Popkova, and A. K. Sinitsyn, Electrodynamics and Propagation of Radiowaves (Bestprint, Minsk, 2004) [in Russian].Google Scholar
  10. 10.
    J. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941; Gostekhizdat, Moscow, 1948).zbMATHGoogle Scholar
  11. 11.
    O. I. Naranovich and A. K. Sinitsyn, “Solution of Two-Dimensional Elliptic Type Equation a Blok Matrix Run Method,” Dokl. BSUIR, no. 3, 18–23 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. S. Azaryan
    • 1
  • M. A. Baturitsky
    • 2
  • Yu. A. Budagov
    • 1
  • V. V. Glagolev
    • 1
  • D. L. Demin
    • 1
  • I. N. Kizhlai
    • 3
  • S. V. Kolosov
    • 3
  • A. A. Kurayev
    • 3
  • T. L. Popkova
    • 3
  • A. O. Rak
    • 3
  • A. K. Sinitsyn
    • 3
  • G. V. Trubnikov
    • 1
  • G. D. Shirkov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.National Scientific and Educational Center of Particle and High Energy PhysicsBelarusian State UniversityMinskRepublic of Belarus
  3. 3.Belarusian State University of Information Technology and Radio ElectronicsMinskRepublic of Belarus

Personalised recommendations