Physics of Particles and Nuclei Letters

, Volume 8, Issue 9, pp 969–972 | Cite as

Λp femtoscopy in collisions of Ar + KCl at 1.76 A GeV with HADES

  • R. Kotte


Results on Λp femtoscopy are reported at the lowest energy so far. At a beam energy of 1.76.A GeV, the reaction Ar + KCl was studied with HADES at SIS18/GSI. A high-statistics and high-purity Λ sample was collected, allowing for the investigation of Λp correlations at small relative momenta. The experimental correlation function is compared to corresponding model calculations allowing the determination of the space-time extent of the Λp emission source. The Λp radius is found significantly smaller than that for Au + Au/Pb + Pb collisions in the AGS, SPS and RHIC energy domains, but larger than that for electroproduction from He. Taking into account all available data, we find the Λp source radius to increase almost linearly with the number of participants to the power of one-third.


Nucleus Letter Invariant Mass Distribution Total Reac Tion Cross Section Close Track Gaussian Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005).CrossRefADSGoogle Scholar
  2. 2.
    F. Wang and S. Pratt, Phys. Rev. Lett. 83, 3138 (1999).CrossRefADSGoogle Scholar
  3. 3.
    P. Chung et al. (E895), Phys. Rev. Lett. 91, 162301 (2003).CrossRefADSGoogle Scholar
  4. 4.
    C. Blume et al. (NA49), Nucl. Phys. A 715, 55 (2003).CrossRefADSGoogle Scholar
  5. 5.
    J. Adams et al. (STAR), Phys. Rev. C 74, 064906 (2005).CrossRefADSGoogle Scholar
  6. 6.
    K. R. Mikhailov, A. V. Stavinsky, A. V. Vlassov, B. O. Kerbikov, and R. Lednicky (CLAS), Phys. At. Nucl. 72, 668 (2009); Acta Phys. Polon. B. 40, 1171 (2009).CrossRefGoogle Scholar
  7. 7.
    L. Fabbietti (HADES), J. Phys. G: Nucl. Part. Phys. 36, 064005 (2009).CrossRefADSGoogle Scholar
  8. 8.
    G. Agakishiev et al. (HADES), Phys. Rev. Lett. 103, 132301 (2009).CrossRefADSGoogle Scholar
  9. 9.
    R. Lednicky and V. L. Lyuboshitz, Sov. J. Nucl. Phys. 35, 770 (1982); V. L. Lyuboshitz, Sov. J. Nucl. Phys. 48, 956 (1988).Google Scholar
  10. 10.
    G. Agakishiev et al. (HADES), Phys. Rev. C 82, 021901 (2010).CrossRefADSGoogle Scholar
  11. 11.
    G. Agakichiev et al. (HADES), Phys. Rev. Lett. 98, 052302 (2007).CrossRefADSGoogle Scholar
  12. 12.
    G. Agakichiev et al. (HADES), Eur. Phys. J. A 41, 243 (2009).CrossRefADSGoogle Scholar
  13. 13.
    G. Agakishiev et al. (HADES), Phys. Rev. C 80, 025209 (2009).CrossRefADSGoogle Scholar
  14. 14.
    A. Schmah, PhD thesis (Techn. Universit at Darmstadt, 2008).Google Scholar
  15. 15.
    S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998); M. Bleicher et al., J. Phys. G 25, 1859 (1999).CrossRefADSGoogle Scholar
  16. 16.
    K. Mikhaylov and A. Stavinskiy,
  17. 17.
    S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 93, 152302 (2004).CrossRefADSGoogle Scholar
  18. 18.
    S. Afanasiev et al. (PHENIX), Phys. Rev. Lett. 103, 142301 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • R. Kotte
    • 1
  1. 1.Forschungszentrum Dresden-RossendorfDresdenGermany

Personalised recommendations