Scaling laws and memory effects in the dynamics of liquids and proteins

  • G. R. Kneller
  • K. Hinsen
  • G. Sutmann
  • V. Calandrini
Article

Abstract

Recent progress in the numerical calculation of memory functions from molecular dynamics simulations allowed the gaining of deeper insight into the relaxation dynamics of liquids and proteins. The concept of memory functions goes back to the work of R. Zwanzig on the generalized Langevin equation, and it was the basis for the development of various dynamical models for liquids. In this article we present briefly a method for the numerical calculation of memory functions, which is then applied to study their scaling behavior in normal and fractional Brownian dynamics. It has been shown recently that the model of fractional Brownian dynamics constitutes effectively a link between protein dynamics on the nanosecond time scale, which is accessible to molecular dynamics simulations and thermal neutron scattering, and the much longer time scale of functional protein dynamics, which can be studied by fluorescence correlation spectroscopy.

PACS numbers

02.60.Cb 32.20.-r 85.35.Lr 

References

  1. 1.
    A. Rahman, Phys. Rev. 136(2A), 405–411 (1964).CrossRefADSGoogle Scholar
  2. 2.
    G. Ciccotti, D. Frenkel, and I. R. McDonald, Simulation of Liquids and Solids (North-Holland, Amsterdam, 1987).Google Scholar
  3. 3.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Univ., Oxford, 1987).MATHGoogle Scholar
  4. 4.
    D. Frenkel and B. Smith, Understanding Molecular Simulation (Academic, London, San Diego, 1996).MATHGoogle Scholar
  5. 5.
    R. Zwanzig, Statistical Mechanics of Irreversibility, Lectures in Theor. Phys. (Wiley, New York, 1961), pp. 106–141.Google Scholar
  6. 6.
    G. R. Kneller and K. Hinsen, J. Chem. Phys. 115(24), 11097–11105 (2001).CrossRefADSGoogle Scholar
  7. 7.
    J. Burg, “Maximum Entropy Spectral Analysis,” PhD Thesis (Stanford Univ., Stanford, CA, USA, 1975).Google Scholar
  8. 8.
    A. Papoulis, Probablity, Random Variables, and Stochastic Processes, 3rd ed. (McGraw Hill, 1991).Google Scholar
  9. 9.
    G. R. Kneller, K. Hinsen, and G. Sutmann, J. Chem. Phys. 118(12), 5283–5286 (2003).CrossRefADSGoogle Scholar
  10. 10.
    P. Espanol and I. Zuniga, J. Chem. Phys. 98(1), 574–580 (1992).CrossRefADSGoogle Scholar
  11. 11.
    G. R. Kneller and G. Sutmann, J. Chem. Phys. 120(4), 1667–1669 (2004).CrossRefADSGoogle Scholar
  12. 12.
    W. G. Glöckle and T.F. Nonnenmacher, Biophys. J. 68, 46–53 (1995).CrossRefADSGoogle Scholar
  13. 13.
    H. Yang and X. S. Xie, J. Chem. Phys. 117(24), 10965–10979 (2002).CrossRefADSGoogle Scholar
  14. 14.
    H. Yang, G. Luo, P. Karnchanaphanurach, et al., Science 302(5643), 262–266 (2003).CrossRefADSGoogle Scholar
  15. 15.
    S. C. Kou and X. S. Xie, Phys. Rev. Lett. 93, 180603 (2004).Google Scholar
  16. 16.
    G. R. Kneller and K. Hinsen, J. Chem. Phys. 121(20), 10278–10283 (2004).CrossRefADSGoogle Scholar
  17. 17.
    G. R. Kneller, Phys. Chem. 7, 2641–2655 (2005).CrossRefGoogle Scholar
  18. 18.
    R. Metzler and J. Klafter, Phys. Rev. E 61(6), 6308–6311 (2000).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw Hill, 1955).Google Scholar
  20. 20.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972).MATHGoogle Scholar
  21. 21.
    G. R. Kneller and V. Calandrini, Manuscript submitted.Google Scholar
  22. 22.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 9, 6269–6270 (1987).CrossRefGoogle Scholar
  23. 23.
    W. Smith, C. W. Yong, and P. M. Rodger, Molecular Simulation 28(1), 385–471 (2002).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • G. R. Kneller
    • 1
    • 2
  • K. Hinsen
    • 1
    • 2
  • G. Sutmann
    • 3
  • V. Calandrini
    • 4
  1. 1.Centre de Biophysique MoléculaireCNRSOrléansFrance
  2. 2.Synchrotron SoleilL’Orme de MerisiersGif-sur-YvetteFrance
  3. 3.Central Institute for Applied Mathematics (ZAM) and John von Neumann Institute for Computing (NIC)Research Centre JülichJülichGermany
  4. 4.Institut Laue-LangevinGrenobleFrance

Personalised recommendations