Advertisement

Physics of Particles and Nuclei Letters

, Volume 4, Issue 3, pp 205–212 | Cite as

Nonlocality effects on spin-one pairing patterns in two-flavor color superconducting quark matter and compact star applications

  • D. N. Aguilera
  • D. B. Blaschke
Physics of Elementary Particles and Nuclei. Theory

Abstract

We study the influence of nonlocality in the interaction on two spin-one pairing patterns of two-flavor quark matter: the anisotropic blue-color pairing besides the usual two-color superconducting matter (2SCb), in which red and green colors are paired, and the color-spin locking phase (CSL). The effect of nonlocality on the gaps is rather large and the pairings exhibit a strong dependence on the form factor of the interaction, especially in the low-density region. The application of these small spin-one condensates for compact stars is analyzed: the early onset of quark matter in the nonlocal models may help to stabilize hybrid star configurations. While the anisotropic blue-quark pairing does not survive a big asymmetry in flavor space as imposed by the charge neutrality condition, the CSL phase as a flavor independent pairing can be realized as neutral matter in compact star cores. However, smooth form factors and the mismatch between the flavor chemical potential in neutral matter make the effective gaps of the order of magnitude ≃10 keV, and a more systematic analysis is needed to decide whether such small gaps could be consistent with the cooling phenomenology.

PACS numbers

04.40.Dg 12.38.Mh 26.60.+c 97.60.Jd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Physics of Neutron Star Interiors,” in Lecture Notes in Physics, Ed. by D. Blaschke, N. K. Glendenning, and A. Sedrakian (Springer, 2001), Vol. 578; “Superdense QCD Matter and Compact Stars,” in NATO Science Series, Ed. by D. Blaschke and D. Sedrakian (Springer, 2005), Vol. 197.Google Scholar
  2. 2.
    D. N. Aguilera, D. Blaschke, and H. Grigorian, “How Robust Is a 2SC Quark Matter Phase under Compact Star Constraints?,” Nucl. Phys. A 757, 527 (2005).CrossRefADSGoogle Scholar
  3. 3.
    D. Blaschke et al., “The Phase Diagram of Three-Flavor Quark Matter under Compact Star Constraints,” Phys. Rev. D: Part. Fields 72, 065020 (2005).Google Scholar
  4. 4.
    S. B. Ruster et al., “The Phase Diagram of Neutral Quark Matter: Self-Consistent Treatment of Quark Masses,” Phys. Rev. D: Part. Fields 72, 034004 (2005).Google Scholar
  5. 5.
    T. Schafer, “Quark Hadron Continuity in QCD with One Flavor,” Phys. Rev. D: Part. Fields 62, 094007 (2000).Google Scholar
  6. 6.
    M. G. Alford et al., “Single Color and Single Flavor Color Superconductivity,” Phys. Rev. D: Part. Fields 67, 054018 (2003).Google Scholar
  7. 7.
    A. Schmitt, “The Ground State in a Spin-One Color Superconductor,” Phys. Rev. D: Part. Fields 71, 054016 (2005).Google Scholar
  8. 8.
    D. Blaschke, D. N. Voskresensky, and H. Grigorian, “Cooling of Neutron Stars with Color Superconducting Quark Cores,” Nucl. Phys. A 774, 815 (2006).CrossRefADSGoogle Scholar
  9. 9.
    A. Schmitt, I. A. Shovkovy, and Q. Wang, “Neutrino Emission and Cooling Rates of Spin-One Color Superconductors,” Phys. Rev. D: Part. Fields 73, 034012 (2006).Google Scholar
  10. 10.
    M. Buballa, J. Hosek, and M. Oertel, “Anisotropic Admixture in Color-Superconducting Quark Matter,” Phys. Rev. Lett. 90, 182002 (2003).Google Scholar
  11. 11.
    D. N. Aguilera et al., “Color-Spin Locking Phase in Two-Flavor Quark Matter for Compact Star Phenomenology,” Phys. Rev. D: Part. Fields 72, 034008 (2005).Google Scholar
  12. 12.
    H. Grigorian, D. Blaschke, and D. Voskresensky, “Cooling of Neutron Stars with Color Superconducting Quark Cores,” Phys. Rev. D: Part. Fields 71, 045801 (2005).Google Scholar
  13. 13.
    S. Popov, H. Grigorian, and D. Blaschke, “Neutron Star Cooling Constraints for Color Superconductivity in Hybrid Stars,” Phys. Rev. C 74, 025803 (2006).Google Scholar
  14. 14.
    M. Baldo et al., “Neutron Stars and the Transition to Color-Superconducting Quark Matter,” Phys. Lett. B 562, 153 (2003).CrossRefADSGoogle Scholar
  15. 15.
    S. M. Schmidt, D. Blaschke, and Y. L. Kalinovsky, “Scalar-Pseudoscalar Meson Masses in Nonlocal Effective QCD at Finite Temperature,” Phys. Rev. C 50, 435 (1994).CrossRefADSGoogle Scholar
  16. 16.
    D. Blaschke et al., “Diquark Condensation Effects on Hot Quark Star Configurations,” Nucl. Phys. A 736, 203 (2004).CrossRefADSGoogle Scholar
  17. 17.
    H. Grigorian, D. Blaschke, and D. N. Aguilera, “Hybrid Stars with Color Superconductivity within a Nonlocal Chiral Quark Model,” Phys. Rev. C 69, 065802 (2004).Google Scholar
  18. 18.
    M. Buballa, “NJL Model Analysis of Quark Matter at Large Density,” Phys. Rep. 407, 205 (2005).CrossRefADSGoogle Scholar
  19. 19.
    M. Buballa et al., “Quark Mass Effects on the Stability of Hybrid Stars,” Phys. Lett. B 595, 36 (2004).CrossRefADSGoogle Scholar
  20. 20.
    R. S. Duhau, A. G. Grunfeld, and N. N. Scoccola, “Two-Flavor Color Superconductivity in Nonlocal Chiral Quark Models,” Phys. Rev. D: Part. Fields 70, 074026 (2004).Google Scholar
  21. 21.
    D. Blaschke et al., “Exploring the QCD Phase Diagram with Compact Stars,” Nucl. Phys. Proc. Suppl. 141, 137 (2005); C. Gocke et. al., “Equation of State for Strange Quark Matter in a Separable Model,” hep-ph/0104183.CrossRefADSGoogle Scholar
  22. 22.
    H. Grigorian, “Parametrization of a Nonlocal Chiral Quark Model in the Instantaneous Three-Flavor Case: Basic Formulas and Tables,” Pisma EChAYa 4(3[139]), 382 (2007) [Phys. Part. Nucl. Lett. 4 (3), 223 (2007)]; hep-ph/0602238.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • D. N. Aguilera
    • 1
  • D. B. Blaschke
    • 2
    • 3
  1. 1.Institut für PhysikUniversite at RostockRostockGermany
  2. 2.Joint Institute for Nuclear ResearchDubnaGermany
  3. 3.Gesellschaft für Schwerionenforschung (GSI)DarmstadtGermany

Personalised recommendations