Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ceramic Matrix Composites Based on Lanthanum Orthophosphate for Disposal of High-Level Radioactive Waste

  • 17 Accesses


Ceramic matrix composites for solidification and disposal of actinide-rare-earth fraction of high-level waste (HLW) were prepared by sintering of nanosized powders of 0.8LaPO4–0.2Al2O3, 0.8LaPO4–0.2Y2O3 and 0.8LaPO4–0.2ZrO2 obtained from 0.8LaPO4 · nH2O–0.2Al(OH)3, 0.8LaPO4 · nH2O–0.2Y(OH)3 and 0.8L-aPO4 · nH2O–0.2ZrO(OH)2 precursors. These powders-precursors were synthesized via sol-gel technique. After heat treatment at 850°C powders of 0.8LaPO4–0.2Al2O3, 0.8LaPO4–0.2Y2O3 and 0.8LaPO4–0.2ZrO2 were obtained. Further powdered compositions were stepwise sintered to prepare ceramic composites which were supposed to be used as matrices for storage of HLW. Rate of La3+, Al3+, Y3+ and Zr4+ leaching from ceramic matrix composites in strength aqueous solutions of NaCl and Na2SO4 simulating underground brine typical for proposed location of HLW geological repository was estimated.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Glorieux, B., Matecki, M., Fayon, F., Coutures, J.P., Palau, S., Douy, A., and Peraudeau, G., Study of lanthanum orthophosphates polymorphism, in view of actinide conditioning, J. Nucl. Mater., 2004, vol. 326, nos. 2–3, pp. 156–164.

  2. 2

    Schlenz, H., Heuser, J., Neumann, A., Schmitz, S., and Bosbach, D., Monazite as a suitable actinide waste form, Z. Kristallogr., 2013, vol. 228, no. 3, pp. 113–123.

  3. 3

    Wang, L. and Liang, T., Ceramics for high level radioactive waste solidification, J. Adv. Ceram., 2012, vol. 1, no. 3, pp. 194–203.

  4. 4

    Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J., Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium, J. Mater. Res., 1998, vol. 13, no. 6, pp. 1434–1484.

  5. 5

    Poitrasson, F., Oelkers, E., Schott, J., and Montel, J.-M., Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: Implications for rare earth element mobility in crystal fluids, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 10, pp. 2207–2221.

  6. 6

    Picot, V., Deschanels, X., Peuget, S., Glorieux, B., Seydoux-Guillaume, A.M., and Wirth, R., Ion beam radiation effects in monazite, J. Nucl. Mater., 2008, vol. 381, no. 3, pp. 290–296.

  7. 7

    Grechanovsky, A.E., Eremin, N.N., and Urusov, V.S., Radiation resistance of LaPO4 (monazite structure) and YbPO4 (zircon structure) from data of computer simulation, Phys. Solid State, 2013, vol. 55, no. 9, pp. 1929–1935.

  8. 8

    Vinogradova, N.S., Shchapova, Yu.V., Votyakov, S.L., Ryzhkov, M.V., and Ivanovskii, A.L., Electronic structure and relative radiation stability of orthophosphates LnPO4 (Ln = Ce, Nd, Sm), J. Struct. Chem., 2014, vol. 55, no. 5, pp. 809–815.

  9. 9

    Meldrum, A., Boatner, L.A., and Ewing, R.C., Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon, J. Mater. Res., 1997, vol. 12, no. 7, pp. 1816–1827.

  10. 10

    Mezentseva, L.P., Osipov, A.V., Akatov, A.A., Doil’nitsin, V.A., Ugolkov, V.L., Popova, V.F., Maslennikova, T.P., and Drozdova, I.A., Chemical and thermal stability of phosphate ceramic matrices, Glass Phys. Chem., 2017, vol. 43, no. 1, pp. 83–90.

  11. 11

    Ugolkov, V.L., Mezentseva, L.P., Osipov, A.V., Popova, V.F., Maslennikova, T.P., Akatov, A.A., and Doil’nitsin, V.A., Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems, Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 28–33.

  12. 12

    Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L., Akatov, A.A., Doil’nitsin, V.A., Maslennikova, T.P., and Yakovlev, A.V., Sol-gel synthesis, thermal behavior of nanopowders and La1 – xHoxPO4 ceramic matrices, Glass Phys. Chem., 2018, vol. 44, no. 5, pp. 440–449.

  13. 13

    Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L., Akatov, A.A., and Doil’nitsin, V.A., Physicochemical properties of ceramics based on LaPO4–DyPO4 system, Glass Phys. Chem., 2019, vol. 45, no. 4, pp. 272–275.

  14. 14

    Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Popova, V., Yakovlev, A., and Maslennikova, T., Solid solutions and thermal transformations in nanosized LaPO4–YPO4–H2O and LaPO4–LuPO4–H2O systems, J. Ceram. Sci. Technol., 2014, vol. 5, no. 3, pp. 237–244.

  15. 15

    RFBR Project N 15-03-04020-a. www.rfbr.ru/rffi/ru/ project_search?GRANT_ITEMS=20&query=%F0% E0%EA&order=2&page=605.

  16. 16

    Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Maslennikova, T., and Koptelova, L., Sol-gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions, J. Sol-Gel Sci. Technol., 2019, vol. 92, no. 2, pp. 427–441.

  17. 17

    Rajesh, K., Baiju, K.V., Jayasankar, M., and Warrier, K.G., A facile aqueous sol-gel process for the synthesis of alumina-lanthanum phosphate nanocomposite, J. Am. Ceram. Soc., 2008, vol. 91, no. 7, pp. 2415–2418.

  18. 18

    Sujith, S.S., Kumar, S.L.A., Mahesh, K.V., Mohamed, A.P., and Ananthakumar, S., Sintering and thermal shock resistance properties of LaPO4 based composite refractories, Trans. Indian Ceram. Soc., 2014, vol. 73, no. 2, pp. 161–164.

  19. 19

    Badolia, A., Sarkar, R., and Pal, S.K., Effect of LaPO4 content on the machinability, microstructure and biological properties of Al2O3, Int. Ceram. Rev., 2015, vol. 64, nos. 6–7, pp. 298–302.

  20. 20

    Min, W., Daimon, K., Matsubara, T., and Hikichi, Y., Thermal and mechanical properties of sintered machinable LaPO4-ZrO2 composites, Mater. Res. Bull., 2002, vol. 37, no. 6, pp. 1107–1115.

  21. 21

    Ren, X., Zhao, M., and Pan, W., Thermal conductivity and mechanical properties of YSZ/LaPO4 composites, J. Mater. Sci., 2014, vol. 49, no. 5, pp. 2243–2251.

  22. 22

    Shijina, K., Sankar, S., Midhun, M., Firozkhan, M., Nair, B.N., Warrier, K.G., and Hareesh, U.N.S., Very low thermal conductivity in lanthanum phosphate-zirconia ceramic nanocomposites processed using a precipitation-peptization synthetic approach, New J. Chem., 2016, vol. 40, no. 6, pp. 5333–5337.

  23. 23

    Wang, R., Pan, W., Chen, J., Fang, M., and Meng, J., Effect of LaPO4 content on the microstructure and machinability of Al2O3/LaPO4 composites, Mater. Lett., 2002, vol. 57, no. 4, pp. 822–827.

  24. 24

    Du, A., Pan, W., Ahmad, K., Shi, S., Qu, Z., and Wan, C., Enhanced mechanical properties of machinable LaPO4/Al2O3 composites by spark plasma sintering, Int. J. Appl. Ceram. Technol., 2009, vol. 6, no. 2, pp. 236–242.

  25. 25

    Min, W., Miyahara, D., Yokoi, K., Yamaguchi, T., Daimon, K., Hikichi, Y., Matsubara, T., and Ota, T., Thermal and mechanical properties of sintered LaP-O4–Al2O3 composites, Mater. Res. Bull., 2001, vol. 36, nos. 5–6, pp. 939–945.

  26. 26

    Balamurugan, K., Preparation and machining studies of LaPO4–Y2O3 ceramic matrix composite, PhD Thesis, Anand Nagar, Krishnankoil: Kalasalingam Univ. (Kalasalingam Acad. Res. Educ.), 2017, 170 p. (see p. 9).

  27. 27

    Li, Z., Liu, J., Li, S., and Du, H., Microstructure, mechanical properties and thermal shock resistance of ZrO2–LaPO4 composites, J. Alloys Compd., 2009, vol. 480, no. 2, pp. 863–866.

  28. 28

    Ojovan, M.I. and Lee, W.E., An Introduction to Nuclear Waste Immobilisation, 2nd ed., Amsterdam: Elsevier, 2014, Ch. 18, pp. 283–305.

Download references


The work was performed according the budget program, project no. 0097-2019-0012.

Author information

Correspondence to L. P. Mezentseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mezentseva, L.P., Osipov, A.V., Akatov, A.A. et al. Ceramic Matrix Composites Based on Lanthanum Orthophosphate for Disposal of High-Level Radioactive Waste. Glass Phys Chem 45, 565–572 (2019). https://doi.org/10.1134/S1087659620010125

Download citation