Advertisement

Glass Physics and Chemistry

, Volume 45, Issue 6, pp 419–427 | Cite as

Investigation of Hydrolytic Polycondensation in Systems Based on Tetraethoxysilane by DK-Spectrophotometry Method

  • O. V. RakhimovaEmail author
  • O. S. MagomedovaEmail author
  • T. A. Tsyganova
Article
  • 4 Downloads

Abstract

The research of the hydrolytic polycondensation kinetics of tetraethoxysilane (TEOS) is required in order to understand the sol-gel synthesis processes and identify the factors determining the direction of these processes. An extensive analysis of these problems permits us to predict appropriate ways for the synthesis of new substances with the predetermined properties. Studying the kinetics of the polycondensation of TEOS above the gel point will allow solving problems of the gels’ strength and the gels’ degree of structuring and thus optimizing the conditions of the further processing materials for the production of the final synthesis products. In this paper the results of the research on the structuring kinetics of the silica in the modeled aqueous-alcoholic solutions of TEOS, including boron-containing solutions, before and after the gel point at various molar ratios of H2O : SiO2 and pH values of 2.0 and 6.0 by the differential kinetic spectrophotometry are presented. The kinetic scheme developed by the authors and the mathematical tool allow determining the degree of the direction of the process of silica polycondensation. The data obtained on the model systems were applied to the description of the silica structuring process in the acid solutions resulting from the treatment of the single-phased sodium borosilicate glass. The obtained results will form the base for the interpretation of the experimental data on the kinetics of the silica structuring contained in the unstable phase of the two-phased alkali-borosilicate glass during the leaching process; i.e., it will allow predicting the dissolution rate, forms of existance, gelation time, strata formation time and, as a consequence, the formation of some porous structure of the resulting porous glass.

Keywords:

porous glass hydrolytic polycondensation alkoxysilanes differential-kinetic (DK) spectrophotometry single-phase sodium borosilicate glasses polyoxometalates ammonium molybdate 

Notes

FUNDING

The work was supported by state assignment no. 0097–2015–0021 of the Program of Fundamental Research of the State Academies of Sciences (in 2013–2015 no. 01201353825, in 2016/2018 no. АААА-А16-116020210284-7, in 2019/2021 no. АААА-А19-119022290087-1) and supported in part by the Department of Chemistry and Materials Science, Russian Academy of Sciences (subject 2).

REFERENCES

  1. 1.
    Brinker, C.J. and Scherer G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, San Diego: Academic, 1990.Google Scholar
  2. 2.
    Engelhardt, H.G., Altenburg, W., Hoebbel, D., and Wieker, W., 29Si-NMR-Spektroskopie an Silicatlosungen. IV. Untersuchungen zur Kondensation der Monokieselsaure, Z. Anorg. Allg. Chem., 1977, vol. 428, pp. 43–52.CrossRefGoogle Scholar
  3. 3.
    Pouxviel, J.C., Boilot, J.P., Beloeil, J.C., and Lallemand, J.Y., NMR study of the sol-gel polymerization, J. Non-Cryst. Solids, 1987, vol. 89, pp. 345–360.CrossRefGoogle Scholar
  4. 4.
    Pouxviel, J.C. and Boilot, J.P., Kinetics study of the acidic catalyzed polymerization of tetraethoxysilane by 29Si-NMR, in Better Ceramics through Chemistry III, Brinker, C.J., Clark, D.E., and Ulrich, D.R., Mater. Res. Soc. Symp. Proc., 1986, vol. 121, p. 39.Google Scholar
  5. 5.
    Boonstra, A.H. and Baken, J.M.E., Relation between the activity and reactivity of a TEOS, ethanol and water mixture, J. Non-Cryst. Solids, 1990, vol. 122, pp. 171–182.CrossRefGoogle Scholar
  6. 6.
    Van Beek, J.J., Seykens, D., Jansen, J.B.H., and Schuiling, R.D., Incipient polymerization of SiO2 in acid-catalyzed TMOS sol-gel systems with molar water/alkoxide ratio between 0.5 and 32, J. Non-Cryst. Solids, 1991, vol. 134, pp. 14–22.CrossRefGoogle Scholar
  7. 7.
    Bernards, T.N.M., van Bommel, M.J., and Boonstra, A.H., Hydrolysis–condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents, J. Non-Cryst. Solids, 1991, vol. 134, pp. 1–13.CrossRefGoogle Scholar
  8. 8.
    Brunet, F. and Cabane, B., Populations of oligomers in sol-gel condensation, J. Non-Cryst. Solids, 1993, vol. 163, pp. 211–216.CrossRefGoogle Scholar
  9. 9.
    Damrau, U. and Marsmann, H.C., The hydrolysis of oligomer intermediates in the sol-gel process, J. Non-Cryst. Solids, 1994, vol. 168, pp. 42–48.CrossRefGoogle Scholar
  10. 10.
    Chiba, J., Sugahara, Y., and Kuroda, K., Novel polysiloxane formation process from dimethyldiethoxysilane in the presence of oxalic acid, J. Sol-Gel Sci. Technol., 1994, vol. 2, pp. 153–156.CrossRefGoogle Scholar
  11. 11.
    Dong, H., Lee, M., Thomas, R.D., Zhang, Z., Reidy, R.F., and Mueller, D.W., Methyltrimethoxysilane sol-gel polymerization in acidic ethanol solutions studied by 29Si-NMR spectroscopy, J. Sol-Gel Sci. Technol., 2003, vol. 28, pp. 5–14.CrossRefGoogle Scholar
  12. 12.
    Oubaha, M., Dubois, M., Murphy, B., and Etienne, P., Structural characterisation of a sol-gel copolymer synthesised from aliphatic and aromatic alkoxysilanes using 29Si-NMR spectroscopy, J. Sol-Gel Sci. Technol., 2006, vol. 38, pp. 111–119.CrossRefGoogle Scholar
  13. 13.
    Gunji, T., Kaburagi, H., Tsukada, S., and Abe, Y., Preparation, properties, and structure of polysiloxanes by acid-catalyzed controlled hydrolytic co-polycondensation of polymethyl(methoxy)siloxane and polymethoxysiloxane, J. Sol-Gel Sci. Technol., 2015, vol. 75, pp. 564–573.CrossRefGoogle Scholar
  14. 14.
    Hui, Y., Zishang, D., Zhonghua, J., and Xiaoping, X., Sol-gel process kinetics for Si(OEt)4, J. Non-Cryst. Solids, 1989, vol. 112, pp. 449–453.CrossRefGoogle Scholar
  15. 15.
    Kuo, C.-F.J. and Chen, J.-B., Study on the synthesis and application of silicone resin containing phenyl group, J. Sol-Gel Sci. Technol., 2015, vol. 76, pp. 66–73.CrossRefGoogle Scholar
  16. 16.
    Perchacz, M., Beneš, H., Kobera, L., and Walterová, Z., Influence of sol-gel conditions on the final structure of silica-based precursors, J. Sol-Gel Sci. Technol., 2015, vol. 75, pp. 649–663.CrossRefGoogle Scholar
  17. 17.
    Orel, B., Ješe, R., Vilčnik, A., and Štangar, U.L., Hydrolysis and solvolysis of methyltriethoxysilane catalyzed with HCl or trifluoroacetic acid: IR spectroscopic and surface energy studies, J. Sol-Gel Sci. Technol., 2005, vol. 34, pp. 251–265.CrossRefGoogle Scholar
  18. 18.
    Jäglid, U. and Lindqvist, O., Reaction rates of the consecutive transesterification of teos with methoxide ions and distribution reaction rates of ethoxytrimethylsilane and methoxytrimethylsilane in alkaline alcohol solutions, J. Non-Cryst. Solids, 1993, vol. 163, pp. 81–89.CrossRefGoogle Scholar
  19. 19.
    Klemperer, W.G., Mainz, V.V., Ramamurthi, S.D., and Rosenberg, F.S., Solid state multinuclear magnetic resonance study of the sol gel process using polysilicate precursors, in Better Ceramics Through Chemistry III, Mater. Res. Soc. Symp. Proc., 1988, vol. 121, p. 15.Google Scholar
  20. 20.
    Brinker, C.J., Keefer, K.D., Schaefer, D.W., Assink, R.A., Kay, B.D., and Ashley, C.S., Sol-gel transition in simple silicates II, J. Non-Cryst. Solids, 1984, vol. 63, pp. 45–59.CrossRefGoogle Scholar
  21. 21.
    Klein, L.C. and Garvey, G.J., Kinetics of the sol/gel transition, J. Non-Cryst. Solids, 1980, vols. 38–39, pp. 45–50.CrossRefGoogle Scholar
  22. 22.
    Blum, J.B. and Ryan, J.W., Gas chromatography study of the acid catalyzed hydrolysis of tetraethylorthosilicate [Si(OC2H5)4], J. Non-Cryst. Solids, 1986, vol. 81, pp. 221–226.CrossRefGoogle Scholar
  23. 23.
    Chojnowski, J., Cypryk, M., Kazmierski, K., and Rozga, K., The reactivity of silanol intermediates in the hydrolytic polycondensation of tetraethoxysilane in asidic media, J. Non-Cryst. Solids, 1990, vol. 125, pp. 40–49.CrossRefGoogle Scholar
  24. 24.
    Sacks, M.D. and Sheu, R.-S., Rheological properties of silica sol-gel materials, J. Non-Cryst. Solids, 1987, vol. 92, pp. 383–396.CrossRefGoogle Scholar
  25. 25.
    Artaki, I., Bradley, M., Zerda, T.W., and Jonas, J., NMR and Raman study of the hydrolysis reaction in sol-gel processes, J. Phys. Chem., 1985, vol. 89, pp. 4399–4404.CrossRefGoogle Scholar
  26. 26.
    Peeters, M.P.J., Bernards, T.N.M., and Van Bommel, M.J., 17O-NMR of sol-gel processes of TEOS and TMOS, J. Sol-Gel Sci. Technol., 1998, vol. 13, pp. 71–74.CrossRefGoogle Scholar
  27. 27.
    Cogan, H.D. and Setterstrom, S.A., Properties of ethyl silicate, Chem. Eng. News., 1946, vol. 24, pp. 2499–2501.CrossRefGoogle Scholar
  28. 28.
    Zerda, T.W., Bradley, M., and Jonas, J., Raman study of the sol to gel transformation under normal and high pressure, Mater. Lett., 1985, vol. 3, pp. 124–126.CrossRefGoogle Scholar
  29. 29.
    Vogelsberger, W., Seidel, A., and Fuchs, R., Contribution to the determination of kinetic parameters of the sol-gel transformation by rheological measurements, J. Colloid Interface Sci., 2000, vol. 230, pp. 268–271.CrossRefGoogle Scholar
  30. 30.
    Griesmar, P., Ponton, A., Serfaty, S., Senouci, B., and Warlus, S., Kinetic study of silicon alkoxides gelation by acoustic and rheology investigations, J. Non-Cryst. Solids, 2003, vol. 319, pp. 57–64.CrossRefGoogle Scholar
  31. 31.
    Arroyo, R., Campero, A., and Rodriguez, R., Aggregation profiles of silica sols in sol-gel process, Mater. Lett., 1993, vol. 16, pp. 89–95.CrossRefGoogle Scholar
  32. 32.
    Rodriguez, R. and Salinas, P., A study of the kinetics of gelation of silica particles induced by lead ions in alcoholic solution, Mater. Lett., 1997, vol. 30, pp. 73–77.CrossRefGoogle Scholar
  33. 33.
    Unger, B., Hähnert, M., and Nitzsche, R., Aging of acid-catalyzed silica sol—a dynamic light scattering study, J. Sol-Gel Sci. Technol., 1998, vol. 13, pp. 81–84.CrossRefGoogle Scholar
  34. 34.
    Smirnova, N.P., Kikteva, T.A., and Eremenko, A.M., Photochemical technique for studying sol-gel-xerogel transitions in silica, Theor. Exp. Chem., 1996, vol. 32, pp. 272–275.CrossRefGoogle Scholar
  35. 35.
    Maniar, P.D., Navrotsky, A., Rabinovich, E.M., Ying, J.Y., and Benziger, J.B., Energetics and structure of sol-gel silicas, J. Non-Cryst. Solids, 1990, vol. 124, pp. 101–111.CrossRefGoogle Scholar
  36. 36.
    Myshlyaeva, L.V. and Krasnoshchekov, V.V., Analiticheskaya khimiya kremniya (Silicon Analytical Chemistry), Moscow: Nauka, 1972.Google Scholar
  37. 37.
    Kalinina, N.E., Gileva, K.G., and Khomutova, E.G., Microanalysis of silicates: an investigation into the natural and technical mineral formation, Trudy VII soveshchaniya po eksperimental’noi i tekhnicheskoi mineralogii i petrografii (Proc. 7th Conf. on Experimental and Technical Mineralogy and Petrography), Moscow: Nauka, 1966, pp. 61–66.Google Scholar
  38. 38.
    Piryutko, M.M. and Shmidt, Ya.A., State of silicic acid in solution, and methods for its colorimetric determination, Bull. Acad. Sci. USSR,Chem. Sci., 1953, vol. 2, pp. 545–550.Google Scholar
  39. 39.
    Coudurier, M., Baudru, B., and Donnet, J.-B., Étude de la polycondensation de l’acide disilicique, Bull. Soc. Chim. Fr., 1971, vol. 9, pp. 3147–3165.Google Scholar
  40. 40.
    Bogdanova, V.I., The reaction between silicate and molybdate ions as a method for assessing the polymerization of silicas, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1970, no. 2 (4), pp. 82–87.Google Scholar
  41. 41.
    Rakhimova, O.V., Tsyganova, T.A., Antropova, T.V., and Kostyreva, T.G., Spectrophotometric determination of molecular forms of silica in solution during the leaching of alkali borosilicate glasses, Glass Phys. Chem., 2000, vol. 26, no. 3, pp. 303–306.Google Scholar
  42. 42.
    Rakhimov, V.I., Rakhimova, O.V., Semov, M.P., and Shil’nikova, M.A., Kinetics of the interaction of silicon alkoxides with ammonium molybdate, Dokl. Akad. Nauk, 1998, vol. 360, no. 2, pp. 220–223.Google Scholar
  43. 43.
    Egorova, E.N., Metody vydeleniya kremnevoi kisloty i analiticheskogo opredeleniya kremnezema (Methods for the Separation of Silicic Acid and Analytical Determination of Silica), Moscow: Akad. Nauk SSSR, 1959.Google Scholar
  44. 44.
    Ni, Y., Xiao, W., and Kokot, S., A differential kinetic spectrophotometric method for determination of three sulphanilamide artificial sweeteners with the aid of chemometrics, Food Chem., 2009, vol. 113, pp. 1339–1345.CrossRefGoogle Scholar
  45. 45.
    Deng, N., Ni, Y., and Kokot, S., Differential kinetic spectrophotometric determination of methamidophos and fenitrothion in water and food samples by use of chemometrics, Chin. J. Chem., 2010.  https://doi.org/10.1002/cjoc.201090087 CrossRefGoogle Scholar
  46. 46.
    Pu, G., Yu, X., Pu, G., and Xi, F., Differential kinetic spectrophotometric determination of chlorpromazine hydrochloride and promethazine hydrochloride by chemometric method, Chin. J. Chem., 2006, vol. 26, pp. 1364–1367.Google Scholar
  47. 47.
    Ghasemi, J., Seraji, H.R., Noroozi, M., Hashemi, M., and Jabbari, A., Differential kinetic spectrophotometric determinations of ascorbic acid and l-cysteine by partial least squares method, Anal. Lett., 2004, vol. 37, pp. 725–737.CrossRefGoogle Scholar
  48. 48.
    Qiao, Y., Wang, B., and Wu, J., Simultaneous determination of different ruthenium species by rate differential kinetic spectrophotometry, J. Renewable Sustainable Energy, 2018.  https://doi.org/10.1063/1.4996359 CrossRefGoogle Scholar
  49. 49.
    Nikitina, S.A., Demyanova, T.A., Stepanov, A.V., Lipovskii, A.A., and Nemtsova, M.A., Kinetic analysis of actinides using differential spectrophotometry, J. Radioanal. Nucl. Chem., 1979, vol. 51, pp. 393–399.CrossRefGoogle Scholar
  50. 50.
    Bayanov, V.A., Rakhimov, V.I., Rakhimova, O.V., and Semov, M.P., Spectrophotometric differential kinetic method for the determination of germanium and silicon in the presence of each other in the GeO2–SiO2 systems, Glass Phys. Chem., 2016, vol. 42, no. 2, pp. 214–217.CrossRefGoogle Scholar
  51. 51.
    Pope, M., Heteropoly and Isopoly Oxometalates, New York: Springer, 1983.CrossRefGoogle Scholar
  52. 52.
    Strickland, J.D.H., Isomeric forms of silicomolybdic acid, Chem. Ind., 1950, vol. 20, pp. 392–404.Google Scholar
  53. 53.
    Strickland, J.D.H., The preparation and properties of silicomolybdic acid. I. The properties of alpha silicomolybdic acid, J. Am. Chem. Soc., 1952, vol. 74, pp. 862–867.CrossRefGoogle Scholar
  54. 54.
    Strickland, J.D.H., The preparation and properties of silicomolybdic acid. II. The preparation and properties of β-silicomolybdic acid, J. Am. Chem. Soc., 1952, vol. 74, pp. 868–871.CrossRefGoogle Scholar
  55. 55.
    Strickland, J.D.H., The preparation and properties of silicomolybdic acid. III. The preparation and properties of β-silicomolybdic acid, J. Am. Chem. Soc., 1952, vol. 74, pp. 872–876.CrossRefGoogle Scholar
  56. 56.
    Jean, M., Transition of isomeric forms of silicomolybdic acid, Chim. Anal., 1955, vol. 37, pp. 125–131.Google Scholar
  57. 57.
    Alexander, G.B., The polymerization of monosilicic acid, J. Am. Chem. Soc., 1954, vol. 76, pp. 2094–2096.CrossRefGoogle Scholar
  58. 58.
    Nikitina, E.A., Geteropolisoedineniya (Heteropoly Compounds), Moscow: Goskhimizdat, 1962.Google Scholar
  59. 59.
    Nikitina, E.A. and Prytkova, E.V., Equilibrium systems: Saturated heteropoly acids—organic solvents, Russ. J. Gen. Chem., 1959, vol. 30, pp. 1410–1417.Google Scholar
  60. 60.
    Hoebbel, V.D. and Wieker, W., Über Kondensationreaktionen der Monokieselsäure, Z. Anorg. Allgem. Chem., 1973, vol. 400, pp. 148–160.CrossRefGoogle Scholar
  61. 61.
    Stade, H., Die Umsetzung von Monokieselsaure mit Molybdänsäure, Z. Anorg. Allgem. Chem., 1978, vol. 446, pp. 29–38.CrossRefGoogle Scholar
  62. 62.
    Stade, H., Die Umsetzung von kondensierten Kieselsauren mit Molybdänsäure, Z. Anorg. Allgem. Chem., 1978, vol. 446, pp. 5–16.CrossRefGoogle Scholar
  63. 63.
    Unger, B., Popp, P.B., Schade, U., and Hähnert, M., Reaction kinetics of SiO2 and ZnO-SiO2 sol-gel solutions, J. Non-Cryst. Solids, 1993, vol. 160, pp. 152–161.CrossRefGoogle Scholar
  64. 64.
    Rakhimov, V.I., Rakhimova, O.V., and Semov, M.P., Kinetics of the early stages of the sol–gel process: II. Distribution of silica over molecular species, Glass Phys. Chem., 2008, vol. 34, no. 2, pp. 160–165.CrossRefGoogle Scholar
  65. 65.
    Mavrodineanu, R., Shultz, J.I., and Menis, O., Accuracy in Spectrophotometry and Luminescence Measurements, Washington: National Bureau of Standards, 1972.Google Scholar
  66. 66.
    Flory, P.J., Principles of Polymer Chemistry, Ithaka: Cornell Univ. Press, 1953, ch. 9.Google Scholar
  67. 67.
    Iler, R.K., The Chemistry of Silica, New York: Wiley, 1979, part 1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ul’yanov (Lenin) St. Petersburg State Electrotechnical Institute LETISt. PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicate Chemistry, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations