Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Formation of Water Soluble and Stable Amorphous Ternary System: Ibuprofen/β-Cyclodextrin/PVP

  • 5 Accesses

Abstract

The aim of this work is to investigate the solubility enhancement of ibuprofen by formation of stable amorphous ternary system (ibuprofen, polyvinylpyrrolidon, β-cyclodextrin) compared to the binary system (ibuprofen, β-cyclodextrin). Ibuprofen was co-milled at ambient temperature in presence of PVP K30 and β‑cyclodextrin. The characterization of obtained mixtures was carried out using X-ray diffraction, infrared spectroscopy, scanning electronic microscope, differential scanning calorimetry and spectroscopy (1H/13C). The dissolution test was carried out in order to evaluate the release rate profiles of ibuprofen in the prepared mixtures. A thermodynamically stable and water-soluble ternary system was obtained, the released amount of ibuprofen in the ternary system increased considerably in comparison to the pure drug. These results highlighted the effect of PVP which enhanced the aqueous solubility of the binary system ibuprofen/β-cyclodextrin in solid state by reinforcing intermolecular interactions and improving complexing abilities of β‑cyclodextrin.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Dudognon, E., Danède, F., Descamps, M., and Correia, N.T., Evidence for a new crystalline phase of racemic ibuprofen, Pharm. Res., 2008, vol. 25, no. 12, pp. 2853–2858. https://doi.org/10.1007/s11095-008-9655-7

  2. 2

    Hussain, A., Smith, G., Khan, K.A., Bukhari, N.I., Pedge, N.I., and Ermolina, I., Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients, Eur. J. Pharm. Sci., 2018, vol. 123, pp. 395–403. https://doi.org/10.1016/j.ejps.2018.08.001

  3. 3

    Najib, N.M., Suleiman, M., and Malakh, A., Characteristics of the in vitro release of ibuprofen from polyvinylpyrrolidone solid dispersions, Int. J. Pharm., 1986, vol. 32, nos. 2–3, pp. 229–236. https://doi.org/10.1016/0378-5173(86)90183-3

  4. 4

    Mallick, S., Pattnaik, S., Swain, K., De, P.K., Saha, A., Ghoshal, G., and Mondal, A., Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin, Eur. J. Pharm. Biopharm., 2008, vol. 68, no. 2, pp. 346–351. https://doi.org/10.1016/j.ejpb.2007.06.003

  5. 5

    Loftsson, T. and Brewster, M.E., Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization, J. Pharm. Sci., 1996, vol. 85, no. 10, pp. 1017–1025. https://doi.org/10.1021/js950534b

  6. 6

    Baboota, S., Dhaliwal, M., and Kohli, K., Physicochemical characterization, in vitro dissolution behavior, and pharmacodynamic studies of rofecoxib-cyclodextrin inclusion compounds. Preparation and properties of rofecoxib hydroxypropyl β-cyclodextrin inclusion complex: A technical note, AAPS PharmSciTech., 2005 vol. 6, no. 1, pp. E83–E90. https://doi.org/10.1208/pt060114

  7. 7

    Reddy, M.N., Rehana, T., Ramakrishna, S., Chowdary, K.P.R., and Diwan, P.V., β-Cyclodextrin complexes of celecoxib: molecular-modeling, characterization, and dissolution studies, AAPS PharmSci., 2004, vol. 6, no. 1, pp. 68–76. https://doi.org/10.1208/ps060107

  8. 8

    Hłladón, T., Pawlaczyk, J.A.N., and Szafran, B., Stability of ibuprofen in its inclusion complex with β-cyclodextrin, J. Inclus. Phenom. Macrocycl. Chem., 2000, vol. 36, no. 1, pp. 1–8. https://doi.org/10.1023/A:1008046724527

  9. 9

    Ghorab, M.K. and Adeyeye, M.C., Enhancement of ibuprofen dissolution via wet granulation with β-cyclodextrin, Pharm. Dev. Technol., 2001, vol. 6, no. 3, pp. 305–314. https://doi.org/10.1081/PDT-100002611

  10. 10

    Pereva, S., Sarafska, T., Bogdanova, S., and Spassov, T., Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation, J. Drug Deliv. Sci. Technol., 2016, vol. 35, pp. 34–39. https://doi.org/10.1016/j.jddst.2016.04.006

  11. 11

    Yang, H. and Bohne, C., Effect of amino acid coinclusion on the complexation of pyrene with β-cyclodextrin, J. Phys. Chem., 1996, vol. 100, no. 34, pp. 14533–14539. https://doi.org/10.1021/jp9607531

  12. 12

    Wang, D., Li, H., Gu, J., Guo, T., Yang, S., Guo, Z., Zhang, X., Zhu, W., and Zhang, J., Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: Simultaneous enhancement of drug solubility and stability in aqueous solutions, J. Pharm. Biomed. Anal., 2013, vol. 83, pp. 141–148. https://doi.org/10.1016/j.jpba.2013.05.001

  13. 13

    Redenti, E., Szente, L., and Szejtli, J., Cyclodextrin complexes of salts of acidic drugs. Thermodynamic properties, structural features and pharmaceutical applications, J. Pharm. Sci., 2001, vol. 90, no. 8, pp. 979–986. https://doi.org/10.1002/jps.1050

  14. 14

    Giri, T.K., Badwaik, H., Alexander, A., and Tripathi, D.K., Solubility enhancement of ibuprofen in the presence of hydrophilic polymer and surfactant, Int. J. Appl. Biol. Pharm. Technol., 2010, vol. 1, no. 2, pp. 793–800.

  15. 15

    Mura, P., Maestrelli, F., and Cirri, M., Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids, Int. J. Pharm., 2003, vol. 260, no. 2, pp. 293–302. https://doi.org/10.1016/S0378-5173(03)00265-5

  16. 16

    Loftsson, T. and Friðriksdóttir, H., The effect of water-soluble polymers on the aqueous solubility and complexing abilities of β-cyclodextrin, Int. J. Pharm., 1998, vol. 163, nos. 1–2, pp. 115–121. https://doi.org/10.1016/S0378-5173(97)00371-2

  17. 17

    Valero, M., Pérez-Revuelta, B.I., and Rodríguez, L.J., Effect of PVP K-25 on the formation of the naproxen: β-Ciclodextrin complex, Int. J. Pharm., 2003, vol. 253, nos. 1–2, pp. 97–110. https://doi.org/10.1016/S0378-5173(02)00664-6

  18. 18

    Loh, Z.H., Samanta, A.K., and Heng, P.W.S., Overview of milling techniques for improving the solubility of poorly water-soluble drugs, Asian J. Pharm. Sci., 2015, vol. 10, no. 4, pp. 255–274. https://doi.org/10.1016/j.ajps.2014.12.006

  19. 19

    Namur, J., Wassef, M., Pelage, J.P., Lewis, A., Manfait, M., and Laurent, A., Infrared microspectroscopy analysis of ibuprofen release from drug eluting beads in uterine tissue, J. Control. Release, 2009, vol. 135, no. 3, pp. 198–202. https://doi.org/10.1016/j.jconrel.2008.12.017

  20. 20

    Liu, L. and Gao, H., Molecular structure and vibrational spectra of ibuprofen using density function theory calculations, Spectrochim. Acta, Part A, 2012, vol. 89, pp. 201–209. https://doi.org/10.1016/j.saa.2011.12.068

  21. 21

    Ramukutty, S. and Ramachandran, E., Growth, spectral and thermal studies of ibuprofen crystals, Cryst. Res. Technol., 2012, vol. 47, no. 1, pp. 31–38. https://doi.org/10.1002/crat.201100394

  22. 22

    Huei, G.O.S., Muniyandy, S., Sathasivam, T., Veeramachineni, A.K., and Janarthanan, P., Iron cross-linked carboxymethyl cellulose–gelatin complex coacervate beads for sustained drug delivery, Chem. Pap., 2016, vol. 70, no. 2, pp. 243–252. https://doi.org/10.1515/chempap-2015-0197

  23. 23

    Rachmawati, H., Edityaningrum, C.A., and Mauludin, R., Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel, AAPS PharmSciTech, 2013, vol. 14, no. 4, pp. 1303–1312. https://doi.org/10.1208/s12249-013-0023-5

  24. 24

    Li, W., Lu, B., Sheng, A., Yang, F., and Wang, Z., Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin, J. Mol. Struct., 2010, vol. 981, nos. 1–3, pp. 194–203. https://doi.org/10.1016/j.molstruc.2010.08.008

  25. 25

    Skorupska, E., Kaźmierski, S., and Potrzebowski, M.J., Solid state NMR characterization of ibuprofen: Nicotinamide cocrystals and new idea for controlling release of drugs embedded into mesoporous silica particles, Mol. Pharm., 2017, vol. 14, no. 5, pp. 1800–1810. https://doi.org/10.1021/acs.molpharmaceut.7b00092

  26. 26

    Pessine, F.B., Calderini, A., and Alexandrino, G.L., Cyclodextrin inclusion complexes probed by NMR techniques, in Magnetic Resonance Spectroscopy, Kim, D.-H., Ed., Rijeka: IntechOpen, 2012.

  27. 27

    Bogdanova, S., Pajeva, I., Nikolova, P., Tsakovska, I., and Müller, B., Interactions of poly(vinylpyrrolidone) with ibuprofen and naproxen: Experimental and modeling studies, Pharm. Res., 2005, vol. 22, no. 5, pp. 806–815. https://doi.org/10.1007/s11095-005-2598-3

  28. 28

    El-Hinnawi, M.A. and Najib, N.M., Ibuprofen-polyvinylpyrrolidone dispersions. Proton nuclear magnetic resonance and infrared studies, Int. J. Pharm., 1987, vol. 37, nos. 1–2, pp. 175–177. https://doi.org/10.1016/0378-5173(87)90024-X

  29. 29

    Schneider, H.J., Hacket, F., Rüdiger, V., and Ikeda, H., NMR studies of cyclodextrins and cyclodextrin complexes, Chem. Rev., 1998, vol. 98, no. 5, pp. 1755–1786. https://doi.org/10.1021/cr970019

  30. 30

    Cruz, J.R., Becker, B.A., Morris, K.F., and Larive, C.K., NMR characterization of the host–guest inclusion complex between β-cyclodextrin and doxepin, Magn. Reson. Chem., 2008, vol. 46, no. 9, pp. 838–845. https://doi.org/10.1002/mrc.2267

  31. 31

    Ghorab, M.K. and Adeyeye, M.C., Elucidation of solution state complexation in wet-granulated oven-dried ibuprofen and β-cyclodextrin: FT-IR and 1H-NMR studies, Pharm. Dev. Technol., 2001, vol. 6, no. 3, pp. 315–324. https://doi.org/10.1081/PDT-100002612

  32. 32

    Najib, N.M., El-Hinnawi, M.A., and Suleiman, M.S., Physicochemical characterization of ibuprofen-polyvinylpyrrolidone dispersions, Int. J. Pharm., 1988, vol. 45, nos. 1–2, pp. 139–144. https://doi.org/10.1016/0378-5173(88)90042-7

  33. 33

    Tabary, N., Garcia-Fernandez, M.J., Danède, F., Descamps, M., Martel, B., and Willart, J.F., Determination of the glass transition temperature of cyclodextrin polymers, Carbohydr. Polym., 2016, vol. 148, pp. 172–180. https://doi.org/10.1016/j.carbpol.2016.04.032

  34. 34

    Hancock, B.C., Shamblin, S.L., and Zografi, G., Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures, Pharm. Res., 1995, vol. 12, no. 6, pp. 799–806. https://doi.org/10.1023/A:1016292416526

  35. 35

    Hussein, K., Türk, M., and Wahl, M.A., Comparative evaluation of ibuprofen/β-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods, Pharm. Res., 2007, vol. 24, no. 3, pp. 585–592. https://doi.org/10.1007/s11095-006-9177-0

  36. 36

    Loftsson, T. and Brewster, M.E., Cyclodextrins as pharmaceutical excipients, Pharm. Technol. Eur., 1997, vol. 9, pp. 26–35.

Download references

ACKNOWLEDGMENTS

The authors thank Pr. Descamps (UMET, France) for his considerable inputs and helpful discussions. On the other hand, the authors confirmed that this research work did not receive any specific funding.

Author information

Correspondence to Marouene Bejaoui.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marouene Bejaoui, Galai, H., Amara, A.B. et al. Formation of Water Soluble and Stable Amorphous Ternary System: Ibuprofen/β-Cyclodextrin/PVP. Glass Phys Chem 45, 580–588 (2019). https://doi.org/10.1134/S1087659619060130

Download citation

Keywords:

  • ibuprofen
  • solubility enhancement
  • PVP K30
  • β-cyclodextrin
  • stable amorphous ternary system