Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Preparation and Study of Porous Ceramics Based on Zirconium Dioxide for Endoprosthesis

Abstract

A strong highly porous ceramic for endoprosthesis possessing open porosity and elasticity modulus values similar to those of bone tissue is prepared through the solid-phase sintering of specimens of the initial powders of the (ZrO2)0.97(Y2O3)0.03 and [(ZrO2)0.97(Y2O3)0.03]0.8(Al2O3)0.2 compositions with blowing agents. The dependence of the characteristics of the sintered ceramics on the composition of zirconium-containing powders and blowing agents is investigated.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1

    Rybakova, U.S., Ivasev, S.S., and Ravodina, D.V., Technologies of creating biocompatible coatings to implants, Reshetnev.Chten., 2016, vol. 2, no. 20, pp. 341–342.

  2. 2

    Okovityi, V.A., Panteleenko, F.I., Panteleenko, A.F., Okovityi, V.V., Kulak, A.I., and Ulasevich, S.A., The process of composite powder production in the base hydroxyapatite and zirconium dioxide for plasma bioceramic coatings, Nauka Tekh., 2013, no. 1, pp. 31–38.

  3. 3

    Santa Cruz, H., Spino, J., and Grathwohl, G., Nanocrystalline ZrO2 ceramics with idealized macropores, J. Eur. Ceram. Soc., 2008, vol. 28, no. 9, pp. 1783–1791.

  4. 4

    Guzman, I.Ya., Vysokoogneupornaya poristaya keramika (Highly Refractory Porous Ceramics), Moscow: Stroiizdat, 1969.

  5. 5

    Guzman, I.Ya., Some principles of the formation of porous ceramic structures, properties and applications, Steklo Keram., 2003, no. 9, pp. 28–31.

  6. 6

    Grashchenkov, D.V., Balinova, Yu.A., and Tinyakova, E.V., Ceramic alumina fibers and materials based on them, Steklo Keram., 2012, no. 4, pp. 32–35.

  7. 7

    Sadovoi, M.A., Larionov, P.M., Samokhin, A.G., and Rozhnova, O.M., Cellular matrices (scaffolds) for bone regeneration: state of the art, Khirurg. Pozvonoch., 2014, no. 2, pp. 79–86.

  8. 8

    Vladimirov, Yu.A., Roshchupkin, D.I., Potapenko, A.Ya., and Deev, A.I., Biofizika: Uchebnik (Biophysics, the School-Book), Moscow: Meditsina, 1983.

  9. 9

    Putlyaev, V.I., Modern bioceramiccs, Soros. Obrazov. Zh., 2004, vol. 8, no. 1, pp. 44–50.

  10. 10

    Soon, G., Pingguan-Murphy, B., Khin Wee Lai, and Ali Akbar, Sh., Review of zirconia-based bioceramic: Surface modification and cellular response, Ceram. Int., 2016, vol. 42, no. 11, pp. 12543–12555.

  11. 11

    Koval’ko, N.Yu., Kolobov, K.A., Kalinina, M.V., Morozova, L.V., Shilova, O.A., and Blinova, M.I., Biocompatibility nanoceramics zirconia with the cells of living organisms in vitro, Tsitologiya, 2016, vol. 58, no. 11, pp. 891–896.

  12. 12

    Mikhailina, N.A., Podzorova, L.I., Rumyantseva, M.N., Shvorneva, L.I., Ovchinnikova, O.A., Anisimova, S.V., Lebedenko, A.I., Lebedenko, I.Yu., and Khvan, V.I., Tetragonal zirconia ceramics for restorative dentistry, Perspekt. Mater., 2010, no. 3, pp. 44–48.

  13. 13

    Buyakova, S.P., Kul’kov, S.N., and Khlusov, I.A., Porous zirconium-based ceramics for endoprothesis of bone tissue, Fiz. Mezomekh., 2004, vol. 7, no. 2, pp. 126–130.

  14. 14

    Fomin, A.S., Komlev, V.S., Barinov, S.M., Fadeeva, I.V., and Rengini, K., Synthesis of hydroxyapatite nanopowders for medical applications, Perspekt. Mater., 2006, no. 2, pp. 51–55.

  15. 15

    Krut’ko, V.K., Kulak, A.I., Musskaya, O.N., and Lesnikovich, Yu.A., Synthetic hydroxyapatite—the basis of bone-substituting biomaterials, Sofia: El. Zh., 2017, no. 2, pp. 50–57.

  16. 16

    Krut’ko, V.K., Kulak, A.I., and Musskaya, O.N., Thermal transformations of composites based on hydroxyapatite and zirconia, Inorg. Mater., 2017, vol. 53, no. 4, pp. 429–436.

  17. 17

    Kim, H.W., Lee, S.Y., Bae, C.J., Noh, Y.J., Kim, H.E., Kim, H.M., and Ko, J.S., Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer, Biomaterials, 2003, vol. 24, pp. 3277–3284.

  18. 18

    Kim, H.W., Noh, Y.J., Koh, Y.H., Kim, H.E., and Kim, H.M., Effect of CaF2 on densification and properties of hydroxyapatite–zirconia composites for biomedical applications, Biomaterials, 2002, vol. 23, pp. 4113–4121.

  19. 19

    An, S.-H., Matsumoto, T., Miyajima, H., Nakahira, A., Kim, K.-H., and Imazato, S., Porous zirconia/hydroxyapatite scaffolds for bone reconstruction, Dental Mater., 2012, vol. 28, no. 12, pp. 1221–1231.

  20. 20

    Kovalko, N.Yu., Dolgin, A.S., Efimova, L.N., Arsent’ev, M.Yu., and Shilova, O.A., Liquid-phase synthesis and investigation of powders based on zirconium dioxide, Glass Phys. Chem., 2018, vol. 44, no. 6, pp. 626–631.

  21. 21

    Koval’ko, N.Yu., Kalinina, M.V., Maslennikova, T.P., Morozova, L.V., Myakin, S.V., Khamova, T.V., Arsent’ev, M.Yu., and Shilova, O.A., Comparative study of powders based on the ZrO2–Y2O3–CeO2 system obtained by various liquid phase methods of synthesis, Glass Phys. Chem., 2018, vol. 44, no. 5, pp. 433–439.

  22. 22

    GOST (State Standard) No. 473.4-81, Products chemically resistant and heat-resistant ceramic. Method for determining apparent density and apparent porosity, 1981.

  23. 23

    Irodov, I.E., Volnovye protsessy (Wave Processes), Moscow: BINOM, 2003.

  24. 24

    Anufriev, A.O., Buyakova, S.P., and Promakhov, V.V., The effect of pore-forming additives on the structure of ceramics based on ZrO2, in Novye materialy. Sozdanie, struktura, svoistva-2013, Tr. XIII Vserossiiskoi shkoly-seminara (Proceedings of the XIII All-Russia School-Seminar with International Participation, on New Materials: Creation, Structure and Properties, Tomsk, Sept. 9–13, 2013), Tomsk: 2013, pp. 194–198.

  25. 25

    Barinov, S.M. and Shevchenko, V.Ya., Prochnost’ tekhnicheskoi keramiki (Durability of Technical Ceramics), Moscow: Nauka, 1996.

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 17-13-01382).

Author information

Correspondence to N. Yu. Koval’ko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koval’ko, N.Y., Ponomareva, M.A., Khamova, T.V. et al. Preparation and Study of Porous Ceramics Based on Zirconium Dioxide for Endoprosthesis. Glass Phys Chem 45, 551–554 (2019). https://doi.org/10.1134/S1087659619060117

Download citation

Keywords:

  • zirconium dioxide
  • bioceramics
  • simultaneous precipitation
  • blowing agents
  • calcium hydroxyapatite
  • porous ceramics for endoprosthesis