Advertisement

Glass Physics and Chemistry

, Volume 44, Issue 5, pp 433–439 | Cite as

Comparative Study of Powders Based on the ZrO2–Y2O3–СeO2 System Obtained by Various Liquid Phase Methods of Synthesis

  • N. Yu. Koval’ko
  • M. V. Kalinina
  • T. P. Maslennikova
  • L. V. Morozova
  • S. V. Myakin
  • T. V. Khamova
  • M. Yu. Arsent’ev
  • O. A. Shilova
Article
  • 1 Downloads

Abstract

Using the liquid-phase methods of synthesis—the coprecipitation of hydroxides and the hydrothermal method—mesoporous xerogels are obtained based on the ZrО2–Y2О3–CeО2 system with 5–8-nm particles and powders (after the heat treatment of xerogels at 600°C) with a coherent scattering region (CSR) size of 9 to 10 nm and Ssp = 96–156 m2/g. After calcination at 1400°C, the powders are transformed into tetragonal solid solutions with a CSR size of 65 nm in the synthesis by the coprecipitation method, and they are transformed into solid solutions with a CSR size of 84 nm with a high degree of tetragonality of c/a = 1.438–1.431 in the synthesis by the hydrothermal method.

Keywords

method of coprecipitation of hydroxides hydrothermal method xerogels nanostructured powders microstructure solid solutions zirconium oxide bioceramics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chevalier, J., Gremillard, L., and Deville, S., Lowtemperature degradation of zirconia and implications for biomedical implants, Ann. Rev. Mater. Res., 2007, vol. 37, no. 1, pp. 1–32.CrossRefGoogle Scholar
  2. 2.
    Shevchenko, A.V., Lashneva, V.V., Dudnik, E.V., Ruban, A.K., and Podzorova, L.I., Synthesis and physico-chemical properties of ceramics from nanocrystalline dioxide powder, Nanosist., Nanomater., Nanotekhnol., 2011, vol. 9, no. 4, pp. 881–893.Google Scholar
  3. 3.
    Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., Drozdova, I.A., and Shilova, O.A., Synthesis and study of nanocomposition based on zirconium dioxyde in order to create new biomaterials, Fiz. Khim. Stekla, 2012, vol. 38, no. 6, pp. 946–950.Google Scholar
  4. 4.
    Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., Arsent’ev, M.Yu., and Shilova, O.A., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355. doi 10.1134/S1087659614030158CrossRefGoogle Scholar
  5. 5.
    Ivanov-Pavlov, D.A., Konakov, V.G., Solov’eva, E.N., Borisova, N.V., and Ushakov, V.M., Interrelation between the particle size and phase formation in Al2O3-ZrO2 system, Vestn. SPb. Univ., Ser. 4, 2008, no. 3, pp. 85–94.Google Scholar
  6. 6.
    Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Yu.D., Sonochemical synthesis of inorganic materials, Russ. Chem. Rev., 2007, vol. 76, no. 2, pp. 133–151.CrossRefGoogle Scholar
  7. 7.
    Vasserman, I.M., Khimicheskoe osazhdenie iz rastvorov (Chemical Deposition from Melts), Glushkova, V.B. and Krzhizhanovska, V.A., Eds., Leningrad: Khimiya, 1980.Google Scholar
  8. 8.
    Kurapova, O.Yu., Konakov, V.G., Golubev, S.N., and Ushakov, V.M., Interdependence between the synthesis technique, phase formation and degree of dispersion of the ceramic powder precursor with the resulting 9CaO-91ZrO2 composition, Nov. Ogneupory, 2014, no. 4, pp. 47–52.Google Scholar
  9. 9.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of Supramolecular Structure Formation of Adsorbents and Catalysts), Novosibirsk: Sib. Otdel. RAN, 2002.Google Scholar
  10. 10.
    Panova, T.I., Morozova, L.V., and Polyakova, I.G., Synthesis and investigation of properties of nanocrystalline dioxides zirconia and hafnia, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 179–187. doi 10.1134/S1087659617050133CrossRefGoogle Scholar
  11. 11.
    Al’myasheva, O.V., Fedorov, B.A., Smirnov, A.V., and Gusarov, V.V., Size, morphology and structure of particles of zirconia nanopowder obtained under hydrothermal conditions, Nanosist.: Fiz., Khim., Mat., 2010, vol. 1, no. 1, pp. 26–36.Google Scholar
  12. 12.
    Pozhidaeva, O.V., Korytkova, E.N., Drozdova, I.A., and Gusarov, V.V., Phase state and particle size of ultradispersed zirconium dioxide as influenced by conditions of hydrothermal synthesis, Russ. J. Gen. Chem., 1999, vol. 69, no. 8, pp. 1219–1222.Google Scholar
  13. 13.
    Al’myasheva, O.V., Korytkova, E.N., Malkov, A.A., and Gusarov, V.V., Synthesis and properties of nanocrystalline powders and nanoceramics based on zirconia dioxyde, in Khimiya poverkhnosti i sintez nanorazmernykh sistem (Surface Chemistry and Synthesis of Nanosized Systems, Collection of Articles), Malygin, A.A., Ed., St. Petersburg: SPbGTI, 2002, pp. 13–20.Google Scholar
  14. 14.
    Duran, P., Villegas, M., and Capel, F., Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powders, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952. doi 10.1007/s11106-011-9337-6CrossRefGoogle Scholar
  15. 15.
    Nechiporenko, A.P., Donorno-aktseptornye svoistva poverkhnosti tverdofaznykh sistem. Indikatornyi metod (Donor–Acceptor Properties of the Surface of Solid-Phase Systems. Indicator Method), St. Petersburg: Lan’, 2017.Google Scholar
  16. 16.
    Sychev, M.M., Minakova, T.S., Slizhov, Yu.G., and Shilova, O.A., Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid–Base Characteristics of Solid Surfaces and Control of Material and Composite Properties), St. Petersburg: Khimizdat, 2016.Google Scholar
  17. 17.
    Koval’ko, N.Yu., Kalinina, M.V., Morozova, L.V., Arsent’ev, M.Yu., Kolobov, K.A., and Shilova, O.A., Study of the lyophilic properties and cytotoxity of nanostructured bioceramics based on the ZrO2–Y2O3–CeO2 and ZrO2–Y2O3–Al2O3 systems, Glass Phys. Chem., 2016, vol. 42, no. 6, pp. 609–614. doi 10.1134/S1087659616060110CrossRefGoogle Scholar
  18. 18.
    Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2–CeO2–Al2O3 system, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 470–477.CrossRefGoogle Scholar
  19. 19.
    Koval’ko, N.Yu., Kalinina, M.V., Malkova, A.N., Lermontov, S.A., Morozova, L.V., Polyakova, I.G., and Shilova, O.A., Synthesis and comparative studies of xerogels, aerogels, and powders based on the ZrO2–Y2O3–CeO2 system, Glass Phys. Chem., 2017, vol. 43, no. 4, pp. 368–375. doi 10.1134/S108765961704006XCrossRefGoogle Scholar
  20. 20.
    Gregg, S. and Sing, K., Adsorption, Surface Area and Porosity, London: Academic, 1982.Google Scholar
  21. 21.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.Google Scholar
  22. 22.
    Vol’kenshtein, M.V., Gribov, L.A., El’yashevich, M.A., and Stepanov, B.I., Kolebaniya molekul (Vibrations of the Molecules), 2nd ed., Moscow: Nauka, 1972.Google Scholar
  23. 23.
    Shishmakov, A.B., Mikushina, Yu.V., Koryakova, O.V., Valova, M.S., Ageev, M.A., and Petrov, L.A., Carbonization powder cellulose modified by silicon and zirconium dioxides, Khim. Rastit. Syr’ya, 2009, no. 1, pp. 49–52.Google Scholar
  24. 24.
    Yukhnevich, G.V., Infrakrasnaya spektroskopiya vody (Infrared Spectroscopy of Water), Moscow: Nauka, 1973.Google Scholar
  25. 25.
    Kössler, I., Methoden der Infrarot-Spektroskopie in der chemischen Analyse (Infrared Spectroscopy Methods in Chemical Analysis), Berlin: Akademische Verlaggesellschaft, 1966.Google Scholar
  26. 26.
    Bakhshiev, N.G., Spektroskopiya mezhmolekulyarnykh vzaimodeistvii (Spectroscopy of Intermolecular Interactions), Leningrad: Nauka, 1972.Google Scholar
  27. 27.
    Vasil’eva, I.V., Myakin, S.V., Rylova, E.V., and Korsakov, V.G., Electron beam modification of the surface of oxide materials (SiO2 and BaTiO3), Russ. J. Phys. Chem. A, 2002, vol. 76, no. 1, pp. 71–76.Google Scholar
  28. 28.
    Sychov, M.M., Zakharova, N.V., and Mjakin, S.V., Surface functional transformations in BaTiO3-CaSnO3 ceramics in the course of milling, Ceram. Int., 2013, vol. 39, pp. 6821–6826.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. Yu. Koval’ko
    • 1
  • M. V. Kalinina
    • 1
  • T. P. Maslennikova
    • 1
  • L. V. Morozova
    • 1
  • S. V. Myakin
    • 2
  • T. V. Khamova
    • 1
  • M. Yu. Arsent’ev
    • 1
  • O. A. Shilova
    • 1
    • 2
    • 3
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  3. 3.St. Petersburg State Electrotechnical University LETISt. PetersburgRussia

Personalised recommendations