Glass Physics and Chemistry

, Volume 42, Issue 5, pp 490–496 | Cite as

Synthesis of Si–C–N–Fe films from volatile organosilicon substances-precursors and ferrocene. Part II. Properties of SiC x N y Fe z films obtained by thermal decomposition of tris(diethylamino)silane and ferrocene

  • R. V. PushkarevEmail author
  • N. I. Fainer
  • A. N. Golubenko
  • Yu. M. Rumyantsev
  • V. A. Nadolinnyi
  • E. A. Maksimovskii
  • E. V. Korotaev
  • V. V. Kaichev


Thermodynamic modeling of the deposition of condensed phases of complex composition has been carried out in the Si–C–N–Fe–H–(He) system in the temperature range of 500–1300 K under total pressure of 10–2–10–1 Torr in the system using initial gas mixture of tris(diethylamino)silane HSi[N(C2H5)2]3, ferrocene (C5H5)2Fe, and helium. Derived from the results of thermodynamic modeling, the method for the preparation of SiC x N y Fe z films using the high-temperature decomposition of the gas mixture of TDEAS, ferrocene, and helium at low pressure in the temperature range of 1073–1273 K has been developed. The dependence of the chemical and phase composition of the films on the conditions of synthesis has been determined using various methods of chemical analysis such as IR spectroscopy, Raman scattering, scanning electron microscopy, energy dispersion spectroscopy, X-ray phase analysis using synchrotron radiation, and X-ray photoelectron spectroscopy (XPS). The magnetic properties of the films have been studied by Faraday’s method and electron paramagnetic resonance. It has been shown that the films are paramagnetic at the temperature of synthesis of 1123 K, while at the deposition temperature of 1273 K they are ferromagnetic. The mechanical properties of the films were characterized by nanoindentation technique.


thermodynamic modeling tris(diethylamino)silane ferrocene low-pressure chemical vapor deposition of films nanocomposite films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fainer, N.I., Pushkarev, R.V., Golubenko, A.N., Rumyantsev, Yu.M, Maksimovskii, E.A., and Kaichev, V.V., Synthesis of Si–C–N–Fe layers from volatile organosilicon precursors and ferrocene. Part I. Synthesis, chemical and phase composition of iron-containing layers prepared by thermal decomposition of ferrocene, Glass Phys. Chem., 2015, vol. 41, no. 6, pp. 853–862.Google Scholar
  2. 2.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., and Maksimovskii, E.A., Use of hexamethylcyclotrisilazane for preparation of transparent films of complex compositions, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 274–283.CrossRefGoogle Scholar
  3. 3.
    Fainer, N.I., Maximovskii, E.A., Rumyantsev, Yu.M., Kosinova, M.L., and Kuznetsov, F.A., Study of structure and phase composition of nanocrystal silicon carbonitride films, NIMA, 2001, vol. 470, no. 1, pp. 193–197.CrossRefGoogle Scholar
  4. 4.
    Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic module using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, pp. 1564–1583.CrossRefGoogle Scholar
  5. 5.
    Ferrari, A.C. and Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 2000, vol. 61, no. 20, pp. 14095–14107.CrossRefGoogle Scholar
  6. 6.
    Tuinstra, F. and Koening, J.L., Raman spectrum of graphite, J. Chem. Phys., 1970, vol. 53, p. 1126–1130.CrossRefGoogle Scholar
  7. 7.
    Fainer, N.I., Kosinova, M.L., and Rumyantsev, Yu.M., Thin films of silicon and boron carbonitrides: synthesis, structure, and the study of composition, Ross. Khim. Zh., 2001, vol. 45, pp. 101–108.Google Scholar
  8. 8.
    Fainer, N.I., Kosinova, M.L., Rumyantsev, Yu.M., Maximovskii, E.A., and Kuznetsov, F.A., Thin silicon carbonitride films are perspective low-K materials, J. Phys. Chem. Solids, 2008, vol. 69, pp. 661–668.CrossRefGoogle Scholar
  9. 9.
    Fainer, N.I. and Kosyakov, V.I., Phase composition of thin silicon carbonitride films obtained by plazma endanced chemical vapour deposition using organosilicon compounds, J. Struct. Chem., 2015, vol. 56, no. 1, pp. 165–176.CrossRefGoogle Scholar
  10. 10.
    JCPDS International Center for Diffraction Data, Card no. 29-1131, United States, 1988.Google Scholar
  11. 11.
    JCPDS International Center for Diffraction Data, Card no. 41-0360, United States, 1988.Google Scholar
  12. 12.
    JCPDS International Center for Diffraction Data, Card no. 41-1487, United States, 1988.Google Scholar
  13. 13.
    JCPDS International Center for Diffraction Data, Card no. 35-822, United States, 1988.Google Scholar
  14. 14.
    Fainer, N.I., Plekhanov, A.G., Golubenko, A.N., Rumyantsev, Yu.M., Rakhlin, V.I., Maximovski, E.A., and Shayapov, V.R., PECVD synthesis of silicon carbonitride layers using methyltris(diethylamino)silane as the new single-source precursor, ECS J. Solid State Sci. Technol., 2015, vol. 4, no. 1, pp. N3153–N3163.CrossRefGoogle Scholar
  15. 15.
    Andronenko, S.I., Leo, A., Stiharu, I., and Misra, S.K., EPR/FMR investigation of Mn-doped SiCN ceramics, Appl. Magn. Reson., 2010, vol. 39, pp. 347–356.CrossRefGoogle Scholar
  16. 16.
    Ikorskii, V.N. and Bogomyakov, A.S., Magnetokhimiya (Magnetochemistry), Novosibirsk: Inst. Mezhdunar. Tomogr. Tsentr, Sib. Otd. Ross. Akad. Nauk, 2013.Google Scholar
  17. 17.
    Klemm, W., Magnetochemie, Leipzig: Akademische Verlagsgesellschaft, 1936.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. V. Pushkarev
    • 1
    Email author
  • N. I. Fainer
    • 1
  • A. N. Golubenko
    • 2
  • Yu. M. Rumyantsev
    • 1
  • V. A. Nadolinnyi
    • 1
  • E. A. Maksimovskii
    • 1
  • E. V. Korotaev
    • 1
  • V. V. Kaichev
    • 2
    • 3
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia
  3. 3.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations