Advertisement

Glass Physics and Chemistry

, Volume 42, Issue 1, pp 87–94 | Cite as

Synthesis and study of the biologically active lysozyme–silver nanoparticles–montmorillonite K10 complexes

  • O. Yu. Golubeva
  • O. V. Shamova
  • A. V. Yakovlev
  • M. S. Zharkova
Article

Abstract

Bioinorganic complexes based on silver nanoparticles coated with lysozyme shell (bioconjugates) and aluminosilicate matrices have been synthesizeed. Layered aluminosilicates with the structure of montmorillonite of grade K10 were used as matrices. Complexes with the silver mass fraction 0.3% (from the chemical analysis data) were obtained through fivefold treatment of the aluminosilicate matrix by a sol of bioconjugates with an average particle size of 18 nm and a thickness of the biological cell of ∼4 nm. The produced biocomplexes were investigated by the methods of X-ray diffraction, scanning electron microscopy, and UV spectroscopy. The samples’ antibacterial activity against Gram-negative (E. coli ML-35p, P. aeruginosa ATCC 27853) and Gram-positive (MRSA ATCC 33591, L. monocytogenes EGD) bacteria has been studied. The presence of the biocomplex activity toward antibiotic-resistant strains E. coli ML-35p and MRSA has been revealed.

Keywords

montmorillonite K10 nanoparticles lysozyme bioconjugates biocomplexes antimicrobial activity antibiotics antibiotic resis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Efimenkova, O., Antibiotics: The life goes on, Nauka i Zhizn’, 2006, no. 8, pp. 48–55.Google Scholar
  2. 2.
    Fessler, A., Scott, C., Kadlec, K., Ehricht, R., Monecke, S., and Schwarz, S., Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis, J. Antimicrob. Chemother., 2010, vol. 65, no. 4, p. 619–625.CrossRefGoogle Scholar
  3. 3.
    Köck, R., Becker, K., Cookson, B., van GemertPijnen, J.E., Harbarth, S., Kluytmans, J., Mielke, M., Peters, G., Skov, R.L., Struelens, M.J., Tacconelli, E., Navarro Torné, A., Witte, W., and Friedrich, A.W., Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe, Euro Surveill., 2010, vol. 15, no. 41, p. 19688.Google Scholar
  4. 4.
    Krutyakov, Yu.A., Kudrinskiy, A.A., Olenin, A.Yu., and Lisichkin, G.V., Synthesis and properties of silver nanoparticles: Advances and prospects, Russ. Chem. Rev., 2008, vol. 77, no. 3, pp. 233–257.CrossRefGoogle Scholar
  5. 5.
    Golubeva, O.Yu., Shamova, O.V., Orlov, D.S., Pazina, T.V., Boldina, A.S., Drozdova, I.A., and Kokryakov, V.N., Synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics, Glass Phys. Chem., 2011, vol. 37, no. 1, pp. 78–84.CrossRefGoogle Scholar
  6. 6.
    Zhu, H. and Njuguna, J., Nanolayered silicates/clay minerals: Uses and effects on health, in Health and Environmental Safety of Nanomaterials: Polymer Nanocomposites and Other Materials Containing Nanoparticles, Njuguna, J., Pielichowski, K., and Zhu, H., Eds., Cambridge, United Kingdom: Woodhead, 2014, pp. 133–146.CrossRefGoogle Scholar
  7. 7.
    Varadwaj, G.B.B. and Parida, K.M., Montmorillonite supported metal nanoparticles: An update on syntheses and applications, RSC Adv., 2013, vol. 33, no. 3, pp. 13583–13593.CrossRefGoogle Scholar
  8. 8.
    Carretero, M.I., Gomes, C.S.F., and Tateo, F., Clays, drugs, and human health, in Handbook of Clay Science: Developments in Clay Science Series, Bergaya, F. and Lagaly, G., Eds., Amsterdam, The Netherlands: Elsevier, 2013, chap. 5.5, vol. 5, pp. 711–764.CrossRefGoogle Scholar
  9. 9.
    Kiersnowski, A., Serwadczak, M., Kuaga, E., Futoma-Kooch, B., Bugla-Poskoska, G., Kwiatkowski, R., and Doroszkiewicz, W., Delamination of montmorillonite in serum—A new approach to obtaining clay-based biofunctional hybrid materials, Appl. Clay Sci., 2009, vols. 3–4, no. 44, pp. 225–229.CrossRefGoogle Scholar
  10. 10.
    Kabiri, K., Mirzadeh, H., and Zohuriaan-Mehr, M.J., Chitosan modified MMT-poly(AMPS) nanocomposite hydrogel: Heating effect on swelling and rheological behavior, J. Appl. Polym. Sci., 2010, vol. 5, no. 116, pp. 2548–2556.Google Scholar
  11. 11.
    Johnston, C.T., Premachandra, G.S., and Szabo, T., Interaction of biological molecules with clay minerals: A combined spectroscopic and sorption study of lysozyme on saponite, Langmuir, 2014, vol. 28, no. 1, pp. 0743–7463.Google Scholar
  12. 12.
    Zhu, L., Letaief, S., Liu, Y., Gervais, F., and Detellier, C., Clay mineral-supported gold nanoparticles, Appl. Clay Sci., 2009, vols. 3–4, no. 43, pp. 439–446.CrossRefGoogle Scholar
  13. 13.
    Golubeva, O.Yu. and Gusarov, V.V., Layered silicates with a montmorillonite structure: Preparation and prospects for the use in polymer nanocomposites, Glass Phys. Chem., 2007, vol. 33, no. 3, pp. 237–241.CrossRefGoogle Scholar
  14. 14.
    Lavorgna, M., Attianese, I., Buonocore, G.G., Conte, A., Del Nobile, M.A., Tescione, F., and Amendola, E., MMT-supported Ag nanoparticles for chitosan nanocomposites: Structural properties and antibacterial activity, Carbohydr. Polym., 2014, vol. 102, no. 1, pp. 385–392.CrossRefGoogle Scholar
  15. 15.
    An, J., Ji, Z., Wang, D., Luo, Q., and Li, X., Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities, Mater. Sci. Eng., C, 2014, vol. 1, no. 36, pp. 33–41.CrossRefGoogle Scholar
  16. 16.
    Tossi, A., Scocchi, M., Zanetti, M., Gennaro, R., Storici, P., and Romeo, D., An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel, cathelicidin-derived, antimicrobial peptides, in Methods in Molecular Biology: Volume 78. Antibacterial Peptide Protocols, Shafer, W.M., Ed., Totowa, New Jersey, United States: Humana, 1997, pp. 133–150.CrossRefGoogle Scholar
  17. 17.
    Jiang, J.-Q. and Zeng, Z., Comparison of modified montmorillonite adsorbents: Part II. The effects of the type of raw clays and modification conditions on the adsorption performance, Chemosphere, 2003, vol. 1, no. 53, pp. 53–62.CrossRefGoogle Scholar
  18. 18.
    Panuszko, A., Wojciechowski, M., Brudziak, P., Rakowska, P.W., and Stangret, J., Characteristics of hydration water around hen egg lysozyme as the protein model in aqueous solution. FTIR spectroscopy and molecular dynamics simulation, Phys. Chem. Chem. Phys., 2012, vol. 14, no. 45, pp. 15765–15773.CrossRefGoogle Scholar
  19. 19.
    Drummy, L.F., Jones, S.E., Pandey, R.B., Farmer, B.L., Vaia, R.A., and Naik, R.R., Bioassembled layered silicate–metal nanoparticle hybrids, ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 5, pp. 1492–1498.CrossRefGoogle Scholar
  20. 20.
    Platon, N., Rosu, A.-M., Arus, V.A., Nistor, D.I., and Siminiceanu, I., Chemically modified clays used for environmental quality, J. Eng. Stud. Res., 2013, vol. 19, no. 4, pp. 52–58.Google Scholar
  21. 21.
    Ibarguren, C., Naranjo, P.M., Stötzel, C., Audisio, M.C., Sham, E.L., Farfán Torres, E.M., and Müller, F.A., Adsorption of nisin on raw montmorillonite, Appl. Clay Sci., 2014, vol. 90, no. 1, pp. 88–95.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. Yu. Golubeva
    • 1
  • O. V. Shamova
    • 2
    • 3
  • A. V. Yakovlev
    • 1
  • M. S. Zharkova
    • 2
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Experimental Medicine of the North-West DistrictRussian Academy of Medical SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations