Glass Physics and Chemistry

, Volume 41, Issue 5, pp 537–544 | Cite as

Stabilization of silver nanoparticles and clusters in porous zeolite matrices with Rho, Beta, and paulingite structures

  • O. Yu. Golubeva
  • N. Yu. Ul’yanova


Silver nanoparticles and clusters (Ag 2 + , Ag 4 + and Ag8) in zeolite matrices having the structures of paulingite, Rho, and Beta have been obtained using the method of chemical reduction of silver in the ionic form preliminarily introduced to the pores of the studied zeolites through ion exchange. The effect of the ion exchange conditions, surface properties, and porous-textural characteristics of zeolite matrices on the size, state, and stability of the obtained silver rnanoparticles over time has been investigated. The samples have been studied using the methods fo X-ray diffraction analysis, flame photometry, and UV spectroscopy with integrating spheres.


zeolites silver nanoparticles clusters paulingite Rho Beta chemical reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Structural chemistry of metal microclusters: Questions and answers, Fiz. Khim. Stekla, 2009, vol. 35, no. 1, pp. 1–12.Google Scholar
  2. 2.
    Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Structural chemistry of metal microclusters: Questions and answers, Glass Phys. Chem., 2009, vol. 35, pp. 1–12.CrossRefGoogle Scholar
  3. 3.
    Petrov, Yu.I., Klastery i malye chastitsy (Clusters and Small Particles), Moscow: Nauka, 1986.Google Scholar
  4. 4.
    Golubeva, O.Yu., Ul’yanova, N.Yu., and Kurilenko, L.N., Synthesis and study of catalytic activity of zeolite Rho with varying content of silver nanoparticles, Fiz. Khim. Stekla, 2013, vol. 39, no. 6, pp. 913–919.Google Scholar
  5. 5.
    Golubeva, O.Yu., Ul’yanova, N.Yu., and Kurilenko, L.N., Synthesis and study of catalytic activity of zeolite Rho with varying content of silver nanoparticles, Glass Phys. Chem., 2013, vol. 39, no. 6, pp. 649–653.CrossRefGoogle Scholar
  6. 6.
    Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: Moscow State University, 2003.Google Scholar
  7. 7.
    Gurin, V.S., Petranovskii, V.P., Hernandez, M.-A., Bogdanchikova, N.E., and Alexeenko, A.A., Silver and copper clusters and small particles stabilized within nanoporous silicate-based materials, Mater. Sci. Eng., A, 2005, vol. 391, pp. 71–76.CrossRefGoogle Scholar
  8. 8.
    Shameli, K., Ahmad, M.B., Zargar, M., Yunus, W.M.Z.W., and Ibrahim, N.A., Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity, Int. J. Nanomed., 2011, vol. 6, pp. 331–341.CrossRefGoogle Scholar
  9. 9.
    Shimizu Ken-ichi, Sugino, K., Kato, K., Yokota, S., Okumura, K., and Satsuma, A., Reaction mechanism of H2-promoted selective catalytic reduction of no with C3H8 over Ag–MFI zeolite, J. Phys. Chem. C, 2007, vol. 111, no. 17, pp. 6481–6487.CrossRefGoogle Scholar
  10. 10.
    Patterson, H.H., Gomez, R.S., Lu, H., and Yson, R.L., Nanoclusters of silver doped in zeolites as photocatalysts, Catal. Today, 2007, vol. 120, no. 2, pp. 168–173.CrossRefGoogle Scholar
  11. 11.
    Sun, T. and Seff, K., Silver clusters and chemistry in zeolites, Chem. Rev., 1994, vol. 94, no. 4, pp. 857–870.CrossRefGoogle Scholar
  12. 12.
    Bogdanchikova, N., Petranovskii, V., Fuentes, S., Paukshtis, E., Sugi, Y., and Licea-Claverie, A., Role of mordenite acid properties in silver cluster stabilization, Mater. Sci. Eng., A, 2000, vol. 276, pp. 236–242.CrossRefGoogle Scholar
  13. 13.
    The Zeolite Framework Database. database.Google Scholar
  14. 14.
    ZEOMICS: Zeolites and Microporous Structures Characterization. Scholar
  15. 15.
    First, E.L., Gounaris, C.E., Wei, J., and Floudas, C.A., Computational characterization of zeolite porous networks: An automated approach, Phys. Chem. Chem. Phys., 2011, vol. 13, no. 38, pp. 17339–17358.CrossRefGoogle Scholar
  16. 16.
    Robson, H., Verified Synthesis of Zeolitic Materials, Amsterdam, The Netherlands: Elsevier, 2001.Google Scholar
  17. 17.
    Rusakov, V.V., Rentgenografiya metallov (X-ray Diffraction of Metals), Moscow: Atomizdat, 1977.Google Scholar
  18. 18.
    Inglezakis, V.J., Loizidou, M.M., and Grigoropoulou, H.P., Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility, J. Colloid Interface Sci., 2004, vol. 275, no. 2, pp. 570–576.CrossRefGoogle Scholar
  19. 19.
    Bogdanchikova, N., Petranovskii, V., Machorro, R., Sugi, Y., Soto, V.M., and Fuentes, S., Stability of silver clusters in mordenites with different SiO2/Al2O3 molar ratio, Appl. Surf. Sci., 1999, vol. 150, pp. 58–64.CrossRefGoogle Scholar
  20. 20.
    Ershov, G., Janata, E., and Henglein, A., Growth of silver particles in aqueous solution: Long-lived “magic” clusters and ionic strength effects, J. Phys. Chem., 1993, vol. 97, pp. 339–343.CrossRefGoogle Scholar
  21. 21.
    Remita, S., Orts, J.M., Feliu, J.M., Mostafavi, M., and Delcourt, M.O., STM identification of silver oligomer clusters prepared by radiolysis in aqueous solution, Chem. Phys. Lett., 1994, vol. 218, p. 115.CrossRefGoogle Scholar
  22. 22.
    Lawless, D., Kapoor, S., Kennepohl, P., Meisel, D., and Serpone, N., Reduction and aggregation of silver ions at the surface of colloidal silica, J. Phys. Chem., 1994, vol. 98, pp. 9619–9625.CrossRefGoogle Scholar
  23. 23.
    Mostafavi, M., Keghouche, N., and Delcourt, M.O., Complexation of silver clusters of a few atoms by a polyanion in aqueous solution: pH effect correlated to structural changes, Chem. Phys. Lett., 1990, vol. 169, pp. 81–84.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations