Glass Physics and Chemistry

, Volume 41, Issue 3, pp 316–323 | Cite as

Monodisperse spherical silica particles with controlled-varied diameter of micro- and mesopores

  • E. Yu. Stovpiaga
  • D. A. Kurdyukov
  • Yu. A. Kukushkina
  • V. V. Sokolov
  • M. A. Yagovkina


A method of fast (1 hour) synthesis of monodisperse spherical silica particles with pore sizes of diameters 0.8 and 2.3–4.5 nm has been developed based on the realization of an aggregate model of particle formation. Cethyl trimethyl ammonium bromide, decyl trimethyl ammonium bromide, and 1,3,5-trimeth-ylbenzene and rhodamine 6G were chosen as the pore-forming agents. The morphological and adsorptive-structural properties of the synthesized materials were studied. The mean-square deviations were no more than 15% for micro- and mesopore diameters, and 10% for the particle diameters. The pore volume and the specific surface of the particles were 0.5–0.8 cm3/g and 600–1100 m2/g.


monodispersity spherical particles silica micropores mesopores template synthesis micelle trimethyl benzene solubilization aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu, M., Zhou, L., Zhang, J., Yuan, P., Thorn, P., Gu, W., and Yu, C., A simple approach to prepare monodisperse mesoporous silica nanospheres with adjustable sizes, J. Colloid Interface Sci., 2012, vol. 376, no.1, pp. 67–75.CrossRefGoogle Scholar
  2. 2.
    Tang, L., Fan, T.M., Borst, L.B., and Cheng, J., Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates, ACS Nano, 2012, vol. 6, no. 5, pp. 3954–3966.CrossRefGoogle Scholar
  3. 3.
    Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., and Lin, V.S.-Y., Mesoporous silica nanoparticles for intracellular controlled drug delivery, Small, 2010, vol. 6, no. 18, pp. 1952–1967.CrossRefGoogle Scholar
  4. 4.
    Tang, F., Li, L., and Chen, D., Mesoporous silica nanoparticles: Synthesis, biocompatibility, and drug delivery, Adv. Mater. (Weinheim), 2012, vol. 24, no. 12, pp. 1504–1534.CrossRefGoogle Scholar
  5. 5.
    Busch, K. and John, S., Photonic band gap formation in certain self-organizing systems, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 58, no. 3, pp. 3896–3928.CrossRefGoogle Scholar
  6. 6.
    Nakamura, T., Yamada, H., Yamada, Yu., Gürtanyel, A., Hartmann, S., Hüsing, N., and Yano, K., New strategy using glycol-modified silane to synthesize monodispersed mesoporous silica spheres applicable to colloidal photonic crystals, Langmuir, 2010, vol. 26, no. 3, pp. 2002–2007.CrossRefGoogle Scholar
  7. 7.
    Trofimova, E.Yu., Kurdyukov, D.A., Yakovlev, S.A., Kirilenko, D.A., Kukushkina, Yu.A., Nashchekin, A.V., Sitnikova, A.A., Yagovkina, M.A., and Golubev, V.G., Monodisperse spherical mesoporous silica particles: Fast synthesis procedure and fabrication of photonic crystal films, Nanotechnology, 2013, vol. 24, no. 15, pp. 155601–155612.CrossRefGoogle Scholar
  8. 8.
    Yano, K. and Fukushima, Y., Particle size control of mono-dispersed super-microporous silica spheres, J. Mater. Chem., 2003, vol. 13, no. 10, pp. 2577–2581.CrossRefGoogle Scholar
  9. 9.
    Büchel, G., Unger, K.K., Matsumoto, A., and Tsutsumi, K., A novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres, Adv. Mater. (Weinheim), 1998, vol. 10, no. 13, pp. 1036–1038.CrossRefGoogle Scholar
  10. 10.
    Li, L.-S., Wang, Y., Young, D.J., Ng, S.-C., and Tan, T.T.Y., Monodispersed submicron porous silica particles functionalized with CD derivatives for chiral CEC, Electrophoresis, 2010, vol. 31, no. 2, pp. 378–387.CrossRefGoogle Scholar
  11. 11.
    Trofimova, E.Yu., Kurdyukov, D.A., Kukushkina, Yu.A., Yagovkina, M.A., and Golubev, V.G., Synthesis of monodispersed mesoporous spheres of submicron size amorphous silica, Glass Phys. Chem., 2011, vol. 37, no. 4, pp. 378–384.CrossRefGoogle Scholar
  12. 12.
    Mizutani, M., Yamada, Y., and Yano, K., Pore-expansion of monodisperse mesoporous silica spheres by a novel surfactant exchange method, Chem. Commun. (Cambridge), 2007, vol. 11, pp. 1172–1174.CrossRefGoogle Scholar
  13. 13.
    Jana, S.K., Mochizuki, A., and Namba, S., Progress in pore-size control of mesoporous MCM-41 molecular sieve using surfactant having different alkyl chain lengths and various organic auxiliary chemicals, Catal. Surv., 2004, vol. 8, pp. 1–13.CrossRefGoogle Scholar
  14. 14.
    Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, T.W.C., Olson, D.H., and Sheppard, E.W., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, vol. 114, no. 27, pp. 10834–10843.CrossRefGoogle Scholar
  15. 15.
    Sayari, A., Yang, Y., Kruk, M., and Jaroniec, M., Expanding the pore size of MCM-41 silicas: Use of amines as expanders in direct synthesis and postsynthesis procedures, J. Phys. Chem. B, 1999, vol. 103, pp. 3651–3658.CrossRefGoogle Scholar
  16. 16.
    Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores, Science (Washington), 1998, vol. 279, no. 5350, pp. 548–552.CrossRefGoogle Scholar
  17. 17.
    Kim, T.-W., Ryoo, R., Kruk, M., Gierszal, K.P., Jaroniec, M., Kamiya, S., and Terasaki, O., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time, J. Phys. Chem. B, 2004, vol. 108, pp. 11480–11489.CrossRefGoogle Scholar
  18. 18.
    Abramzon, A.A., Bocharov, V.V., Gaevoi, G.M., Maiofis, A.D., Maiofis, R.M., Matashkina, R.M., Skvirskii, L.Ya., Chistyakov, B.E., and Shul’ts, L.A., Poverkhnostno-aktivnye veshchestva. Spravochnik (Surface Active Agents: A Reference Book), Abramzon, A.A. and Gaevoi, G.M., Eds., Moscow: Khimiya, 1979.Google Scholar
  19. 19.
    Trofimova, E.Yu., Aleksenskii, A.E., Grudinkin, S.A., Korkin, I.V., Kurdyukov, D.A., and Golubev, V.G., Effect of tetraethoxysilane pretreatment on synthesis of colloidal particles of amorphous silicon dioxide, Colloid J., 2011, vol. 73, pp. 546–551.CrossRefGoogle Scholar
  20. 20.
    Gregg, S. and Sing, K., Adsorption, Surface Area, and Porosity, New York: Academic, 1982. Translated under the title Adsorbtsiya, udel’naya poverkhnost’, poristost’, Moscow: Mir, 1984.Google Scholar
  21. 21.
    Jaroniec, M., Kruk, M., Olivier, J.P., and Koch, S., A new method for the accurate size analysis of MCM-41 and other silica-based mesoporous materials, Stud. Surf. Sci. Catal., 2000, vol. 128, pp. 71–80.Google Scholar
  22. 22.
    Lu, Y., Cao, G., Kale, R.P., Prabakar, S., López, G.P., and Brinker, C.J., Microporous silica prepared by organic templating: Relationship between the molecular template and pore structure, Chem. Mater., 1999, vol. 11, no. 5, pp. 1223–1229.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. Yu. Stovpiaga
    • 1
    • 2
  • D. A. Kurdyukov
    • 1
  • Yu. A. Kukushkina
    • 1
  • V. V. Sokolov
    • 1
  • M. A. Yagovkina
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations