Glass Physics and Chemistry

, Volume 40, Issue 1, pp 99–105

Effect of thermal annealing on the surface of sol-gel prepared oxide film studied by atomic force microscopy and Raman spectroscopy

  • A. A. Ponomareva
  • V. A. Moshnikov
  • O. A. Maslova
  • Yu. I. Yuzyuk
  • G. Suchaneck
Article
  • 86 Downloads

Abstract

In this work, we have investigated the surface topography evolution of sol-gel deposited SiO2-SnO2 nanocomposite films annealed in the temperature range 200–600°C. The fractal dimension of atomic force microscopy images of the films was determined by the cube counting method and the triangulation method. The fractal dimension was shown to be an appropriate and easy to use tool for the characterization of nanosized thin film structures. Raman spectroscopy revealed the formation of a SiO2 cage-like structure at 400°C and SnO2 crystallization above 500°C.

Keywords

the sol-gel method nanocomposite SiO2-SnO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maximov, A.I., Moshnikov, V.A., Tairov, Yu.M., and Shilova, O.A., Basics of Sol-Gel Technology of Nanocomposites, St. Petersburg: Elmor, 2008, 2nd edition.Google Scholar
  2. 2.
    Bubnov, Ju.Z. and Shilova, O.A., Nanoscale glassy films of multifunctional purposes in the technology of fabrication of semiconductor gas sensors, Tekhnol. Priborostr., 2003, vol. 3, no. 7, pp. 60–71.Google Scholar
  3. 3.
    Shilova, O.A., Silicate nanosized films prepared by the sol-gel method for use in planar technology for fabricating semiconductor gas sensors, Glass Phys. Chem., 2005, vol. 31, pp. 201–218.CrossRefGoogle Scholar
  4. 4.
    Shilova, O.A., Ways of controlling structure and properties of sol-gel-derived hybrid micro- and nanocomposite materials, Adv. Sci. Technol., 2006, vol. 45, pp. 793–798.CrossRefGoogle Scholar
  5. 5.
    Movchan, T.G., Ur’ev, N.B., Khamova, T.V., Tarasyuk, E.V., Potapov, A.N., Shilova, O.A., Klimenko, N.S., and Shevchenko, V.V., Kinetics of structuring in the sol-gel systems based on tetraethoxysilane with organic additives: I. Sols, Glass Phys. Chem., 2005, vol. 31, no. 2, pp. 219–228.CrossRefGoogle Scholar
  6. 6.
    Movchan, T.G., Khamova, T.V., Shilova, O.A., Tarasyuk, E.V., Potapov, A.N., Ur’ev, N.B., Klimenko, N.S., and Shevchenko, V.V., Kinetics of structuring in the sol-gel systems based on tetraethoxysilane with organic additives: II. Gels, Glass Phys. Chem., vol. 32, no. 6, pp. 666–673.Google Scholar
  7. 7.
    Klein, L.C., Sol-gel coatings, in Coating Technology Handbook, Tracton, A.A., Ed., 3rd ed., Boca Raton, Florida, United States: Taylor and Francis Group, LLC, 2006, pp. 96-1–96-4.Google Scholar
  8. 8.
    Veith, M., Mathur, S., Lecerf, N., Huch, V., Decker, T., Beck, H.P., Eiser, W., and Haberkorn, R., Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3, and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes, J. Sol-Gel Sci. Technol., 2000, vol. 17, no. 2, pp. 145–158.CrossRefGoogle Scholar
  9. 9.
    Tarasyuk, E.V., Shilova, O.A., and Hashkovskiy, S.V., Sol-Gel Technology for Producing Ceramic and Hybrid Coatings, Magnitogorsk: Magnitogorsk State Technical University, 2009.Google Scholar
  10. 10.
    Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.M., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K., Recommendations for the characterization of porous solids (Technical report), Pure Appl. Chem., 1994, vol. 66, no. 8, pp. 1739–1758.CrossRefGoogle Scholar
  11. 11.
    Feng, C.D., Shimizu, Y., and Egashira, M., Effect of gas diffusion process on sensing properties of SnO2 thin film sensors in a SiO2: SnO2 layer-built structure fabricated by sol-gel process, J. Electrochem. Soc., 1994, vol. 141, pp. 220–225.CrossRefGoogle Scholar
  12. 12.
    Il’in, A.S., Maksimov, A.I., Moshnikov, V.A., and Yaroslavtsev, N.P., Internal friction in semiconductor thin films grown using sol-gel technology, Semiconductors, 2005, vol. 39, no. 3, pp. 281–284.CrossRefGoogle Scholar
  13. 13.
    Vicsek, T., Fractal Growth Phenomena, Singapore: World Scientific, 1992.CrossRefGoogle Scholar
  14. 14.
    Chen, Z., Pan, D., Zhao, B., Ding, G., Jiao, Z., Wu, M., Shek, Ch.-H., Wu, L.C.M., and Lai, J.K.L., Insight on fractal assessment strategies for tin dioxide thin films, ACS Nano, 2010, vol. 4, pp. 1202–1208.CrossRefGoogle Scholar
  15. 15.
    Raoufi, D., Fractal analyses of ITO thin films: A study based on power spectral density, Physica B (Amsterdam), 2010, vol. 405, pp. 451–455.CrossRefGoogle Scholar
  16. 16.
    Jeng, Y.-R., Tsai, P.C., and Fang, T.H., Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy, Microelectron. Eng., 2003, vol. 65, pp. 406–415.CrossRefGoogle Scholar
  17. 17.
    Ivanov, V.V., Sidorak, I.A., Shubin, A.A., and Denisova, L.T., Synthesis of SnO2 powders by decomposition of the thermally unstable compounds, Zh. Sib. Fed. Univ., Ser.: Tekh. Tekhnol., 2010, vol. 3, no. 2, pp. 189–213.Google Scholar
  18. 18.
    Xu, Ch., Tamaki, J., Miura, N., and Yamazoe, N., Grain size effects on gas sensitivity of porous SnO2-based elements, Sens. Actuators, B, 1991, vol. 3, pp. 147–155.CrossRefGoogle Scholar
  19. 19.
    Gwyddion data analysis software. http://gwyddion.net.
  20. 20.
    Douketis, C., Wang, Z., Haslett, T.L., and Moskovits, M., Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy, Phys. Rev. B: Condens. Matter, 1995, vol. 51, pp. 11022–11031.CrossRefGoogle Scholar
  21. 21.
    Grill, A. and Neumayer, D.A., Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization, J. Appl. Phys., 2003, vol. 94, pp. 6697–6707.CrossRefGoogle Scholar
  22. 22.
    Kar, A., Yang, J., Dutta, M., Stroscio, M.A., Kumari, J., and Meyyappan, M., Rapid thermal annealing effects on tin oxide nanowires prepared by vapor-liquid-solid technique, Nanotechnology, 2009, vol. 20, 065704 (4 pages).CrossRefGoogle Scholar
  23. 23.
    Zuo, J., Xu, C., Liu, X., Wang, Ch., Wang, Ch., Hu, Y., and Qian, Y., Study of the Raman spectrum of nanometer SnO2, J. Appl. Phys., 1994, vol. 75, pp. 1835–1836.CrossRefGoogle Scholar
  24. 24.
    Scott, J.F., Raman spectrum of SnO2, J. Chem. Phys., 1970, vol. 53, pp. 852–853.CrossRefGoogle Scholar
  25. 25.
    Ferrari, A.C. and Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B: Condens. Matter, 2000, vol. 61, pp. 14095–14107.CrossRefGoogle Scholar
  26. 26.
    Yoshino, H., Kamiya, K., and Nasu, H., IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses, J. Non-Cryst. Solids, 1990, vol. 126, nos. 1–2, pp. 68–78.CrossRefGoogle Scholar
  27. 27.
    Wang, Yu., Ramos, I., and Santiago-Avilés, J.J., Synthesis of ultra-fine porous tin oxide fibres and its process characterization, Nanotechnology, 2007, vol. 18, article 295601 (7 pages).Google Scholar
  28. 28.
    Provata, A., Falaras, P., and Xagas, A., Fractal features of titanium oxide surfaces, Chem. Phys. Lett., 1998, vol. 297, pp. 484–490.CrossRefGoogle Scholar
  29. 29.
    Díaz-Parralejo, A., Macías-García, A., Ortiz, A.L., and Cuerda-Correa, E.M., Effect of calcination temperature on the textural properties of 3 mol % yttriastabilized zirconia powders, J. Non-Cryst. Solids, 2010, vol. 356, pp. 175–178.CrossRefGoogle Scholar
  30. 30.
    Feng, Y.S., Zhou, S.M., Li, Y., and Zhang, L.D., Preparation of the SnO2/SiO2 xerogel with a large specific surface area, Mater. Lett., 2003, vol. 57, nos. 16–17, pp. 2409–2412.CrossRefGoogle Scholar
  31. 31.
    Ponomareva, A.A., Advanced gas-sensing properties of nanoporous and mesoporous tin oxide films prepared by sol-gel method, Proceedings of the 12th Conference of the European Ceramic Society (ECerS XII), Stockholm, Sweden, June 19–23, 2011, Shen, Zh., Ed., Amsterdam, The Netherlands: Elsevier, 2012.Google Scholar
  32. 32.
    Gracheva, E.I., Moshnikov, V.A., Karpova, S.S., and Maraeva, E.V., Net-like structured materials for gas sensors, J. Phys: Conf. Ser., 2011, vol. 291, article 012017 (8 pages).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Ponomareva
    • 1
    • 2
  • V. A. Moshnikov
    • 1
  • O. A. Maslova
    • 3
  • Yu. I. Yuzyuk
    • 3
  • G. Suchaneck
    • 2
  1. 1.St. Petersburg State Electrotechnical University (LETI)St. PetersburgRussia
  2. 2.Solid State Electronics LaboratoryTU DresdenDresdenGermany
  3. 3.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations