Glass Physics and Chemistry

, Volume 39, Issue 5, pp 480–489 | Cite as

Formation of modified areas of porous glass saturated with glycerin under the action of laser radiation

Article

Abstract

The formation of modified areas with changed optical properties in the volume of thin plates of porous glass (composition of 94.73SiO2 · 4.97B2O3 · 0.30Na2O), saturated with glycerin—a substance with a high polarization capacity, under the action of laser radiation was investigated. A continuous wave ytterbium fiber laser with radiation wavelength λ = 1.07 μm weakly absorbed by porous glass was used as the radiation source. When the radiation power was within the range of 9.6–16.5 W and the irradiation time was 270–300 s, optical-grade modified areas were obtained. During the experiment, the dependences of temperature in the spots of the impact and of the power of the radiation transmitted through a thin plate of porous glass, on irradiation time were registered.

Keywords

laser-induced formation local optic modification porous glass glycerin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nukaga, O., Yamamoto, S., Tabata, K.V., Kubota, T., Samukawa, S., and Sugiyama, M., Lateral nano-channel fabricated in fused silica by femtosecond laser irradiation and wet etching, in Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (microTAS-2010), Groningen, The Netherlands, October 3–7, 2010, Groningen, 2010, pp. 1199–1201.Google Scholar
  2. 2.
    Bellouard, Y., Said, A., Dugan, M., and Bado, P., Monolithic three-dimensional integration of microfluidic channels and optical waveguides in fused silica, Mater. Res. Soc., 2004, vol. 782, pp. A3.2.1–A3.2.6.Google Scholar
  3. 3.
    Gorodetskii, M.L., Osnovy teorii opticheskikh mikrorezonatorov (Fundamentals of the Theory of Optical Microresonators), Moscow: Lomonosov Moscow State University, 2010.Google Scholar
  4. 4.
    Tomoko Yamabe, Hiroshi Murotani, Kenjiro Nakamoto, and Moriaki Wakaki, Composition change of glass materials in microlenses formed by CO2 laser, J. Laser Micro/Nanoeng., 2007, vol. 2, no. 1, pp. 40–43.CrossRefGoogle Scholar
  5. 5.
    Yu Teng, Jiajia Zhou, Fangfang Luo, Geng Lin, and Jianrong Qiu, Controllable space selective precipitation of copper nanoparticles in borosilicate glasses using ultrafast laser irradiation, J. Non-Cryst. Solids, 2011, vol. 357, pp. 2380–2383.CrossRefGoogle Scholar
  6. 6.
    Parisi, A., Cino, A.C., Busacca, A.C., Cherchi, M., and Riva-Sanseverino, S., Integrated optic surface plasmon resonance measurements in a borosilicate glass substrate, Sensors, 2008, vol. 8, pp. 7113–7124.CrossRefGoogle Scholar
  7. 7.
    Honma, T., Benino, Y., Fujiwara, T., and Komatsu, T., Transition metal atom heat processing for writing of crystal lines in glass, Appl. Phys. Lett., 2006, vol. 88, pp. 231105–231108.CrossRefGoogle Scholar
  8. 8.
    Tsuyoshi Honma, Yuta Tsukada, and Takayuki Komatsu, Two-dimensional Raman imaging for periodic domain structures in laser-patterned ferroelastic β′-(Sm,Gd)2(MoO4)3 crystal lines in glass, Opt. Mater., 2010, vol. 32, p. 443–447.CrossRefGoogle Scholar
  9. 9.
    Streltsov, A., Borrelli, N., Dickinson, J., Kiczenski, T.J., Logunov, S., and Schroeder, J., Laser-written highcontrast waveguides in glass, in Photonic Materials, Devices, and Applications: III, Serpenguzel, A., Ed., Dresden, Germany, 2009; Proc. SPIE—Int. Soc. Opt. Eng., 2009, vol. 7366, pp. 736611–736618.Google Scholar
  10. 10.
    Kostyuk, G.K., Sergeev, M.M., Antropova, T.V., Yakovlev, E.B., and Anfimova, I.N., Laser-induced local change in the optical properties of alkaline-borosilicate glasses, Glass Phys. Chem., 2013, vol. 39, no. 3, pp. 266–275.CrossRefGoogle Scholar
  11. 11.
    Rakhmankulov, D.L., Kimsanov, B.Kh., and Chanyshev, R.R., Fizicheskie i khimicheskie svoistva glitserina (Physical and Chemical Properties of Glycerol), Moscow: Khimiya, 2003.Google Scholar
  12. 12.
    Kostyuk, G.K., Roskova, G.P., Mazurin, O.V., and Yakovlev, E.B., Distribution of the refractive index in the plates prepared from microporous glasses of different initial compositions and thicknesses, Fiz. Khim. Stekla, 1993, vol. 19, no. 4, pp. 642–651.Google Scholar
  13. 13.
    Molchanova, O.S., Natrievoborosilikatnye i poristye stekla (Sodium Borosilicate and Porous Glasses), Moscow: Oborongiz, 1961.Google Scholar
  14. 14.
    Zon, B.A., Interaction of laser radiation with atoms, Soros. Obraz. Zh., 1998, no. 1, pp. 84–88.Google Scholar
  15. 15.
    Delone, N.B., Perturbation of the atomic spectrum in alternating-current electromagnetic field, Soros. Obraz. Zh., 1998, no. 5, pp. 90–95.Google Scholar
  16. 16.
    Krainov, V.P., Orientation and focusing of the molecules in response to a laser radiation field, Soros. Obraz. Zh., 2000, vol. 6, no. 4, pp. 90–95.Google Scholar
  17. 17.
    Romanov, P.V., Threshold effects in liquid crystals, Soros. Obraz. Zh., 2001, vol. 7, no. 1, pp. 96–101.Google Scholar
  18. 18.
    Simoni, F. and Francescangeli Î., Effects of light on molecular orientation of liquid crystals, J. Phys.: Condens. Matter, 1999, no. 11, pp. R439–R487.Google Scholar
  19. 19.
    Mikhailov, G.P. and Burshtein, L.L., Modern theories of dipole polarization of condensed molecular systems, Sov. Phys.—Usp., 1961, vol. 4, no. 3, pp. 389–404.CrossRefGoogle Scholar
  20. 20.
    Eremin, I.E. and Eremina, V.V., Simulation of the polarization properties of condensed dielectric media, Model. Sist., 2005, no. 1, pp. 41–55.Google Scholar
  21. 21.
    Veiko, V.P., Libenson, M.N., and Chervyakov, G.G., Vzaimodeistvie lazernogo izlucheniya s veshchestvom (Silovaya optika) (Interaction of Laser Radiation with Matter (Power Optics)), Moscow: Fizmatlit, 2008.Google Scholar
  22. 22.
    Meshkovskii, I.K., Kompozitsionnye opticheskie materialy na osnove poristykh matrits (Composite Optical Materials Based on Porous Matrices), St. Petersburg: St. Petersburg State University of Information Technologies, Mechanics, and Optics, 1998.Google Scholar
  23. 23.
    Savel’ev, I.V., Kurs obshchei fiziki (A Course of General Physics), Moscow: Nauka, 1988, vol. 2.Google Scholar
  24. 24.
    Meshkovskii, I.K. and Klim, O.V., Influence of laser radiation on the electrodiffusion of molecular ions in a porous glass rod, Tech. Phys. Lett., 1997, vol. 23, no. 5, pp. 378–379.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • G. K. Kostyuk
    • 1
  • M. M. Sergeyev
    • 1
  • E. B. Yakovlev
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics And OpticsSaint PetersburgRussia

Personalised recommendations