Glass Physics and Chemistry

, Volume 39, Issue 4, pp 351–357 | Cite as

The effect of gold nanoparticles on crystallization processes in photostructured lithium-silicate glass

  • D. A. Kochetkov
  • N. V. Nikonorov
  • G. A. Sycheva
  • V. A. Tsekhomskii
Article

Abstract

The surface plasmon resonance of gold nanoparticles (NP) is investigated, allowing their sizes before and after X-ray irradiation to be determined. It is shown that X-ray irradiation results in the growth of NP, while their heat treatment results in their reduction. The quasi-atomic structure of gold NP is assumed, leading to the entrapment of electrons on unoccupied orbitals upon X-ray irradiation. An explanation of the crystallization and amorphization of photostructured glass in the lithium-silicate system is suggested based on the fact that gold NP are negatively charged.

Keywords

gold nanoparticles surface plasmon resonance quasi-atomic structure of gold nanoparticles crystallization and amorphization of photostructured gold-containing glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sidorov, A.I., Double plasmon resonance in spherical metal-dielectric-metal nanostructures, Tech. Phys., 2006, vol. 51, no. 4, pp. 477–481.CrossRefGoogle Scholar
  2. 2.
    Jimenez, J.A., Sendova, M., and Liu, H., Evolution of the optical properties of a silver-doped phosphate glass during thermal treatment, J. Lumin., 2011, vol. 131, pp. 535–538.CrossRefGoogle Scholar
  3. 3.
    Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters (Springer Series in Materials Science), Berlin: Springer-Verlag, 1995.CrossRefGoogle Scholar
  4. 4.
    Hayakawa, T., Selvan, S.T., and Nogami, M., Enhanced fluorescence from Eu3+ owing to surface plasma oscillations of silver particles in glass, J. Non-Cryst. Solids, 1999, vol. 259, pp. 16–22.CrossRefGoogle Scholar
  5. 5.
    Ryasnyanskiy, A.I., Palpant, B., Debrus, S., Pal, U., and Stepanov, A.L., Nonlinear optical properties of gold nanoparticles dispersed in different optically transparent matrices, Phys. Solid State, 2009, vol. 51, no. 1, pp. 55–60.CrossRefGoogle Scholar
  6. 6.
    Chakraborty, P., Metal nanoclusters in glasses as nonlinear photonic materials, J. Mater. Sci., 1998, vol. 33, no. 9, pp. 2235–2249.CrossRefGoogle Scholar
  7. 7.
    Dietrich, T.R., Ehrfeld, W., Lacher, M., Kramer, M., and Speit, B., Fabrication technologies for microsystems utilizing photoetchable glass, Microelectron. Eng., 1996, vol. 30, nos. 1–4, pp. 497–504.CrossRefGoogle Scholar
  8. 8.
    Stookey, S.D., Photosensitive glass, Ind. Eng. Chem., 1949, vol. 41, no. 4, pp. 856–861.CrossRefGoogle Scholar
  9. 9.
    Stookey, S.D., Coloration of glass by gold, silver, and copper, J. Am. Ceram. Soc., 1949, vol. 32, no. 8, pp. 246–249.CrossRefGoogle Scholar
  10. 10.
    Gurkovskii, E.V., Photosensitive glass, Legk. Prom-st., 1952, no. 7, pp. 36–37.Google Scholar
  11. 11.
    Stookey, S.D., Chemical machining of photosensitive glass, Ind. Eng. Chem., 1953, vol. 45, no. 1, pp. 115–118.CrossRefGoogle Scholar
  12. 12.
    Maurer, R.D., Nucleation and growth in a photosensitive glass, J. Appl. Phys., 1958, vol. 29, no. 1, pp. 1–8.CrossRefGoogle Scholar
  13. 13.
    Stookey, S.D., Catalyzed crystallization of glass in theory and practice, Ind. Eng. Chem., 1959, vol. 51, no. 7, pp. 805–808.CrossRefGoogle Scholar
  14. 14.
    Berezhnoi, A.I., Sitally i fotositally (Glass Ceramics and Photoglass Ceramics), Moscow: Stroiizdat, 1981.Google Scholar
  15. 15.
    Pong, B.K., Elim, H.I., Chong, J.-X., Ji, W., Trout, B.L., and Lee, J.-Y., Enhanced fluorescence from Eu3+ owing to surface plasma oscillations of silver particles in glass, J. Phys. Chem. C, 2007, vol. 111, no. 17, pp. 6281–6287.CrossRefGoogle Scholar
  16. 16.
    Navarro, J.M.F. and Villegas, M.A., Preparation of gold ruby glasses by the solgel method, Glastech. Ber., 1992, vol. 65, no. 2, pp. 32–40.Google Scholar
  17. 17.
    Sycheva, G.A., Sol-gel synthesis of photostructured gold-containing lithium silicate glasses, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 496–504.CrossRefGoogle Scholar
  18. 18.
    Boiko, G.G., Sycheva, G.A., and Valyuk, L.G., Influence of the synthesis conditions on the kinetics of crystallization of the photosensitive lithium silicate glass, Fiz. Khim. Stekla, 1995, vol. 21, no. 1, pp. 65–74.Google Scholar
  19. 19.
    Alonco, J.A., Structure and Properties of Atomic Nanoclusters, London: Imperial College Press, 2005, p. 410. http://www.alibris.com/search/books/isbn/9781860945519.CrossRefGoogle Scholar
  20. 20.
    Taketoshi Kawai and Takeshi Hirai, Luminescence properties of KCl: Ag crystals excited near the fundamental absorption edge, J. Lumin., 2012, vol. 132, no. 2, pp. 513–516.CrossRefGoogle Scholar
  21. 21.
    Chapman, R. and Mulvaney, P., Electro-optical shifts in silver nanoparticle films, Chem. Phys. Lett., 2001, vol. 349, pp. 358–362.CrossRefGoogle Scholar
  22. 22.
    Sycheva, G.A., Golubkov, V.V., and Kostyreva, T.G., Effect of X-rays on crystal nucleation in photostructured glasses of a lithium-silicate system, Glass Phys. Chem., 2012, vol. 38, no. 2, pp. 201–205.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. A. Kochetkov
    • 1
  • N. V. Nikonorov
    • 1
  • G. A. Sycheva
    • 2
  • V. A. Tsekhomskii
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations