Glass Physics and Chemistry

, Volume 39, Issue 3, pp 276–278 | Cite as

Optical studies of Se-Bi-Te-Sb thin films by single transmission spectrum

  • P. B. Barman
  • Pankaj Sharma


Chalcogenide glasses are interesting materials on account of their infrared application. In present paper, thin films of quaternary chalcogenide glasses, Se80.5Bi1.5Te18 − x Sb x , where x = 0, 2, 4, has been investigated for their optical properties using transmission spectra in the spectral range of 500–2500 nm. The refractive index shows the normal dispersion behavior and found to increase with increase in Sb content. Extinction coefficient has been observed decreases with Sb content.


chalcogenide glasses refractive index extinction coefficient dielectric constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanaka, K., Structural phase transitions in chalcogenide glasses, Phys. Rev. B: Condens. Matter, 1989, vol. 39, pp. 1270–1279.CrossRefGoogle Scholar
  2. 2.
    Seddon, A.B., Chalcogenide glasses: A review of their preparation, properties, and applications, J. Non-Cryst. Solids, 1995, vol. 184, pp. 44–50.CrossRefGoogle Scholar
  3. 3.
    Spektor, B., Lisiansky, M., Shamir, J., Klebnov, M., and Lyubin, V., On the linearity of holographic recording in amorphous As2S3 films, J. Appl. Phys., 2000, vol. 87, pp. 3234–3239.CrossRefGoogle Scholar
  4. 4.
    Teteris, J., Holographic recording in amorphous chalcogenide semiconductor thin films, J. Optoelectron. Adv. Mater., 2002, vol. 4, pp. 687–697.Google Scholar
  5. 5.
    Shaaban, E.R., Kaid, M.A., Moustafa, E.S., and Adel, A., Effect of compositional variations on the optical properties of Sb-Ge-Se thin films, J. Phys. D: Appl. Phys., 2008, vol. 41, article 125301 (7 pages).Google Scholar
  6. 6.
    Seddon, A.B., Pan, W.J., Furniss, D., Miller, C.A., Rowe, H., Zhan, D., McBrearty, E., Zhang, Y., Loni, A., Sewell, P., and Benson, T.M., Fine embossing of chalcogenide glasses-A new fabrication route for photonic integrated circuits, J. Non-Cryst. Solids, 2006, vol. 352, pp. 2515–2520.CrossRefGoogle Scholar
  7. 7.
    Nasu, H., Kubodera, K., Kobayashi, M., Nakamura, M., and Kamiya, K., Third-harmonic generation from some chalcogenide glasses, J. Am. Ceram. Soc., 1990, vol. 73, pp. 1794–1796.CrossRefGoogle Scholar
  8. 8.
    Mehta, R.M., Kaur, G., and Mathur, P.C., Antimonydoping effect on the ac conductivity of the amorphous Se-Te system, Phys. Rev. B: Condens. Matter, 1991, vol. 43, pp. 12388–12392.CrossRefGoogle Scholar
  9. 9.
    Swanepoel, R., Determination of the thickness and optical constants of amorphous silicon, J. Phys. E.: Sci. Instrum., 1983, vol. 16, pp. 1214–1222.CrossRefGoogle Scholar
  10. 10.
    Sharma, P., Sharma, V., and Katyal, S.C., Variation of optical constants in Ge10Se60Te30 thin film, Chalcogenide Lett., 2006, vol. 3, pp. 73–79.Google Scholar
  11. 11.
    Sharma, P. and Katyal, S.C., Effect of Cd and Pb impurities on the optical properties of fresh evaporated amorphous (As2Se3)90Ge10 thin film, Appl. Phys. B: Lasers Opt., 2009, vol. 95, pp. 367–373.CrossRefGoogle Scholar
  12. 12.
    Sharma, P. and Katyal, S.C., Determination of optical parameters of a-(As2Se3)90Ge10 thin film, J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 2115–2120.CrossRefGoogle Scholar
  13. 13.
    Mott, N.F. and Davis, E.A., Conduction in non-crystalline systems: V. Conductivity, optical absorption, and photoconductivity in amorphous semiconductors, Philos. Mag., 1970, vol. 22, pp. 903–922.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of Physics and Materials ScienceJaypee University of Information TechnologyWaknaghat, SolanIndia

Personalised recommendations