Glass Physics and Chemistry

, Volume 39, Issue 2, pp 155–161 | Cite as

Structure change of the Cu64Zr36 metallic glass in the conditions of uniaxial deformation

  • D. G. Dunaev
  • A. T. Kosilov
  • A. V. Evteev
  • E. V. Levchenko
Article

Abstract

It is shown on the basis of analysis of the Delaunay simplices of the atomic structure of the Cu64Zr36 metallic glass in the process of plastic deformation that the density distribution of the basic structure units of tetrahedrons and quartoctahedrons in the system is practically unchanging. The elementary acts of plastic deformation are reduced to restructuring of local atomic configurations of tetrahedrons into quartoctahedrons and, vice versa, quartoctahedrons into tetrahedrons, while preserving the quantitative relation between the structural units.

Keywords

computer simulation metallic glass molecular dynamics structural relaxation Delaunay simplices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kosilov, A.T. and Khonik, V.A., Directional Structural Relaxation and Homogeneous Flowing of Freshly-Quenched Metallic Glasses, Izv. Akad. Nauk, Ser. Fiz., 1993, vol. 57, no. 11, pp. 192–197.Google Scholar
  2. 2.
    Bobrov, O.P., Kosilov, A.T., and Khonik, V.A., Homogeneous Flow and Strain Recovery in Metallic Glasses as a Result of Irreversible Anisotropic Structural Relaxation, Phys. Met. Metallogr., 1996, vol. 81, no. 3, pp. 318–324.Google Scholar
  3. 3.
    Kosilov, A.T., Mikhailov, V.A., Sviridov, V.V., and Khonik, V.A., Kinetics of Isothermal Creep in Metallic Glasses Including the Statistical Distribution of Activation Parameters, Phys. Solid State, 1997, vol. 39, no. 11, pp. 1796–1802.CrossRefGoogle Scholar
  4. 4.
    Fetisov, G.V., Sinkhrotronnoe izluchenie. Metody issledovaniya struktury veshchestv (Synchrotron Radiation: Methods of Investigation of the Structure of Substances), Moscow: Fizmatlit, 2007.Google Scholar
  5. 5.
    Ziman, J., Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems, Cambridge: Cambridge University Press, 1979. Translated under the title Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennykh sistem, Moscow: Mir, 1982.Google Scholar
  6. 6.
    Zallen, R., The Physics of Amorphous Solids, New York: John Wiley and Sons, 1983.CrossRefGoogle Scholar
  7. 7.
    Polukhin, V.A. and Vatolin, N.A., Modelirovanie amorfnykh metallov (Simulation of Amorphous Metals), Moscow: Nauka, 1985.Google Scholar
  8. 8.
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford (United Kingdom): Clarendon, 1987.Google Scholar
  9. 9.
    Likhachev, V.A. and Shudegov, V.E., Printsipy organizatsii amorfnykh struktur (Principles of the Organization of Amorphous Structures), St. Petersburg: St. Petersburg State University, 1999.Google Scholar
  10. 10.
    Evteev, A.V., Kosilov, A.T., and Levchenko, E.V., Structural Model for Vitrification of Pure Metals, JETP Lett., 2002, vol. 76, no. 2, pp. 104–106.CrossRefGoogle Scholar
  11. 11.
    Pryadil’shikov, A.Yu., Kosilov, A.T., Evteev, A.V., and Levchenko, E.V., Structural Organization of Icosahedral Coordination Polyhedra in the Molecular Dynamics Model of the Ni60Ag40 Metallic Glass, JETP, 2008, vol. 107, no. 3, pp. 430–434.CrossRefGoogle Scholar
  12. 12.
    Levchenko, E.V., Evteev, A.V., Vakhmin, S.Yu., Kosilov, A.T., and Pryadil’shchikov, A.Yu., Cluster Model of the Structural Organization of Amorphous Iron, Phys. Met. Metallogr., 2010, vol. 109, no. 6, pp. 563–567.CrossRefGoogle Scholar
  13. 13.
    Medvedev, N.N., Metod VoronogoDelone v issledovanii struktury nekristallicheskikh sistem (The Voronoi-Delaunay Method in the Structural Investigation of Non-Crystalline Systems), Novosibirsk: Siberian Branch of the Russian Academy of Sciences, 2000.Google Scholar
  14. 14.
    Verlet, L., Computer Experiments on Classical Fluids: I. Thermodynamic Properties of Lennard-Jones Molecules, Phys. Rev., 1967, vol. 159, pp. 98–103.CrossRefGoogle Scholar
  15. 15.
    Daw, M.S. and Baskes, M.I., Embedded-Atom Method: Derivation and Application to Impurities, Surfaces and Other Defects in Metals, Phys. Rev. B: Solid State, 1984, vol. 29, no. 12, pp. 6443–6453.CrossRefGoogle Scholar
  16. 16.
    Clementi, E. and Roetti, C., Roothan-Hartree-Fock Atomic Wave Functions, At. Data Nucl. Data Tables, 1974, vol. 14, nos. 3–4, pp. 117–324.Google Scholar
  17. 17.
    Zolotukhin, I.V., Fizicheskie svoistva amorfnykh metallicheskikh materialov (Physical Properties of Amorphous Metallic Materials), Moscow: Metallurgiya, 1986.Google Scholar
  18. 18.
    Fridman, Ya.B., Mekhanicheskie svoistva metallov (Mechanical Properties of Metals), Moscow: State Publishing House of Defense Industry, 1952.Google Scholar
  19. 19.
    Anikeenko, A.V. and Medvedev, N.N., Structural Characteristics of Close Packings of Hard Spheres: Critical Densities, J. Struct. Chem., 2007, vol. 48, no. 4, pp. 774–781.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. G. Dunaev
    • 1
  • A. T. Kosilov
    • 1
  • A. V. Evteev
    • 1
  • E. V. Levchenko
    • 1
  1. 1.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations