Glass Physics and Chemistry

, Volume 38, Issue 6, pp 473–477 | Cite as

Synthesis and crystal structure of the disordered modification of Tl6Si2O7

  • O. I. Siidra
  • S. N. Britvin
  • S. V. Krivovichev
  • D. A. Klimov
  • W. Depmeier


A new compound β-Tl6Si2O7 has been investigated using the methods of IR spectroscopy and microprobe and X-ray diffraction analysis. The elementary unit parameters were as follows: P63/m, a = 9.673(2) Å, c = 3.9169(9) Å, and V = 317.4(1) Å3. The structure was resolved by direct methods and corrected until R 1 = 0.029 (wR 2 = 0.047) for 240 reflections [F o] ≥ 4σ F . The crystal structure of β-Tl6Si2O7 contains one symmetrically independent position of the Tl+ cation that forms three short (〈Tl-O〉 = 2.54 Å) bonds and one weak bond (2.93 Å) with the oxygen atom. One can observe a strong disordering of silicon atoms (Si-Si = 0.64 Å). The distorted tetragonal pyramids TlO4 are linked through silicate tetrahedra into a three-dimensional framework. The interesting feature of the crystal structure of β-Tl6Si2O7 is in the presence of wide channels occupied by lone electron pairs on Tl+ cations. One can also mention that in most of the structures of Tl+ oxygen-containing salts the lone pairs are associated into separate parts in the form of micelles in channels of frameworks or other structural cavities.


thallium silicates lone electron pair thallium oxosalts X-ray structural analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friberg, S. and Smith, P., Nonlinear Optical Glasses for Ultrafast Optical Switches, IEEE J. Quantum Electron., 1987, vol. 23, pp. 2089–2094.CrossRefGoogle Scholar
  2. 2.
    Hall, D.W., Newhouse, M.A., Borrelli, N.F., Dumbaugh, W.H., and Weidman, D.L., Nonlinear Optical Susceptibilities of High-Index Glasses, Appl. Phys. Lett., 1989, vol. 54, pp. 1293–1295.CrossRefGoogle Scholar
  3. 3.
    Fargin, E., Berthereau, A., and Cardinal, T., Le Flem G., Ducasse L., Canioni L., and Segonds P., Optical Non-Linearity in Oxide Glasses, J. Non-Cryst. Solids, 1996, vol. 203, pp. 96–101.CrossRefGoogle Scholar
  4. 4.
    Jeansannetas, B., Blanchandin, S., Thomas, P., Marchet, P., Champarnaud-Mesjard, J.C., Merle-Mejean, T., Frit, B., Nazabal, V., Fargin, E., Le Flem, G., Martin, M.O., Bousquet, B., Canioni, L., Le Boiteux, S., Segonds, P., and Sarger, L., Glass Structure and Optical Nonlinearities in Thallium(I) Tellurium(IV) Oxide Glasses, J. Solid State Chem., 1999, vol. 146, pp. 329–335.CrossRefGoogle Scholar
  5. 5.
    Kang, I., Krauss, T.D., Wise, F.W., Aitken, B.G., and Borrelli, N.F., Femtosecond Measurement of Enhanced Optical Nonlinearities of Sulfide Glasses and Heavy-Metal-Doped Oxide Glasses, J. Opt. Soc. Am., 1995, vol. B12, pp. 2053–2059.Google Scholar
  6. 6.
    Touboul, M. and Feutelais, Y., Système Tl2O-GeO2 Etétude Structurale des Germanates de Thallium(I), J. Solid State Chem., 1980, vol. 32, p. 167.CrossRefGoogle Scholar
  7. 7.
    Panek, L.W. and Bray, P.J., NMR of 205Tl in Tl2O-SiO2, Tl2O-GeO2, and Tl2O-B2O3 Glasses, J. Chem. Phys., 1977, vol. 66, pp. 3822–3831.CrossRefGoogle Scholar
  8. 8.
    Touboul, M. and Feutelais, Y., Structure du Germanate de Thallium(I) Tl8Ge5O14, Acta Crystallogr., 1979, vol. B35, pp. 810–815.Google Scholar
  9. 9.
    Aitken, B.G., Hall, D.W., and Newhouse, M.A., Thallium Germanate, Tellurite, and Antimonite Glasses, US Patent 5283212, 1994.Google Scholar
  10. 10.
    Edahiro, T., Inagaki, N., and Kurosaki, Sh., Process for Producing Optical Glass Product, US Patent 4528010, 1985.Google Scholar
  11. 11.
    Kuan-Han Sun, Thallium-Silicate Glass, US Patent 2472448(A), 1949.Google Scholar
  12. 12.
    Otto, K. and Millberg, M.E., Ionic Conduction and Structure in Cesium and Thallium Silicate Glasses, J. Am. Ceram. Soc., 1967, vol. 50, pp. 513–516.CrossRefGoogle Scholar
  13. 13.
    Loshagin, A.V., NMR Study of Sodium Borosilicate Glasses Containing Thallium Oxide, Glass Phys. Chem., 1997, vol. 23, no. 4, pp. 287–292.Google Scholar
  14. 14.
    Milberg, M.E. and Peters, C.R., Cation Distribution in Thallium Silicate Glasses, Phys. Chem. Glasses, 1969, vol. 10, pp. 46–49.Google Scholar
  15. 15.
    Piffard, Y., Marchand, R., and Tournoux, M., Structure et Filiation Structurale des Phases Tl6Si2O7 et Tl3BO3, Rev. Chim. Miner., 1975, vol. 12, pp. 210–217.Google Scholar
  16. 16.
    Britvin, S.N., Siidra, O.I., Krivovichev, S.V., and Depmeier, W., Synthesis and Crystal Structure of the First Thallium Hydrous Nesosilicate Tl4SiO4 · 0.5H2O, Z. Anorg. Allg. Chem., 2009, vol. 635, pp. 518–522.CrossRefGoogle Scholar
  17. 17.
    Siidra, O.I., Britvin, S.N., and Krivovichev, S.V., Hydroxocentered [(OH)Tl3]2+ Triangle as a Building Unit in Thallium Compounds: Synthesis and Crystal Structure of Tl4(OH)2CO3, Z. Kristallogr., 2009, vol. 224, pp. 563–567.CrossRefGoogle Scholar
  18. 18.
    Siidra, O.I., Britvin, S.N., Krivovichev, S.V., and Depmeier, W., Polytypism of Layered Alkaline Hydroxides: Crystal Structure of TlOH, Z. Anorg. Allg. Chem., 2010, vol. 636, pp. 595–599.CrossRefGoogle Scholar
  19. 19.
    Khimiya i tekhnologiya redkikh i rasseyannykh elementov (Chemistry and Technology of Rare-Earth and Scattered Elements), Bol’shakov, K.A., Ed., Moscow: Vysshaya Shkola, 1976 [in Russian].Google Scholar
  20. 20.
    Sheldrick, G.M., A Short History of SHELX, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, pp. 112–122.CrossRefGoogle Scholar
  21. 21.
    Dai, Y.-S. and Hughes, J.M., Crystal-Structure Refinements of Vanadinite and Pyromorphite, Can. Mineral., 1989, vol. 27, pp. 189–192.Google Scholar
  22. 22.
    Dai, Y.-S., Hughes, J.M., and Moore, P.B., The Crystal Structures of Mimetite and Clinomimetite, Pb5(AsO4)3Cl, Can. Mineral., 1991, vol. 29, pp. 369–376.Google Scholar
  23. 23.
    Krivovichev, S.V., Armbruster, T., and Depmeier, W., One-Dimensional Lone Electron Pair Micelles in the Crystal Structure of Pb5(SiO4)(VO4)2, Mater. Res. Bull., 2004, vol. 39, pp. 1717–1722.CrossRefGoogle Scholar
  24. 24.
    Pyykö, P., Strong Closed-Shell Interactions in Inorganic Chemistry, Chem. Rev., 1997, vol. 97, pp. 597–636.CrossRefGoogle Scholar
  25. 25.
    Jansen, M., Zur Kristallstruktur von Kaliumdisilicat, Z. Kristallogr., 1982, vol. 160, pp. 127–133.CrossRefGoogle Scholar
  26. 26.
    Hoch, C. and Roehr, C., Alkalimetall-Oxosilicate A 6(Si3O9) und A 6(Si2O7) (A = Rb, Cs): Darstellung und Kristallstruktur, Z. Naturforsch., B: Chem. Sci., 2001, vol. 56, pp. 423–430.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. I. Siidra
    • 1
  • S. N. Britvin
    • 1
  • S. V. Krivovichev
    • 1
    • 2
  • D. A. Klimov
    • 1
  • W. Depmeier
    • 3
  1. 1.St Petersburg State UniversitySt. PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  3. 3.University of KielKielGermany

Personalised recommendations