Glass Physics and Chemistry

, Volume 38, Issue 4, pp 379–385

Temperature behavior of the free activation energy of viscous flow of glass-forming melts in a wide temperature range

  • D. S. Sanditov
  • S. B. Munkueva
  • A. A. Mashanov
  • B. D. Sanditov
Article

Abstract

The Jenckel equation for the temperature dependence of the free activation energy of viscous flow of inorganic glasses has been satisfactorily interpreted within the hole-activation model of viscous flow. “The formation of a fluctuation hole” (deformation of a region of the network) characterizes a preliminary local change in the structure that is necessary for the main elementary act of viscous flow of refractory glass-forming melts, i.e., the switching of bridge valence bonds according to the Muller-Nemilov mechanism.

Keywords

viscous flow of glass melts free energy temperature behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nemilov, S.V., Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton: CRC Press, 1995.Google Scholar
  2. 2.
    Sanditov, D.S. and Bartenev, G.M., Fizicheskie svoistva neuporyadochennykh struktur (Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982 [in Russian].Google Scholar
  3. 3.
    Ojovan, M.I., Review Article: Viscosity and Glass Transition in Amorphous Oxides, Adv. Condens. Matter Phys., 2008, article ID 817829 (23 pages).Google Scholar
  4. 4.
    Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena, New York: McGraw-Hill, 1941. Translated under the title Teoriya absolyutnykh skorostei reaktsii, Moscow: Inostrannaya Literatura, 1948.Google Scholar
  5. 5.
    Nemilov, S.V., Viscous Flow of Glasses in Relation to Their Structure: Application of the Theory of Rate Processes, Sov. J. Glass Phys. Chem., 1992, vol. 18, no. 1, pp. 1–12.Google Scholar
  6. 6.
    Nemilov, S.V., The Nature of Viscous Flow of Glasses with a Frozen Structure and Some Corollaries of the Valence-Configurational Theory of Fluidity, Sov. J. Glass Phys. Chem., 1978, vol. 4, no. 2, pp. 129–148.Google Scholar
  7. 7.
    Myuller, R.L., The Valence Theory of Viscosity and Fluidity in the Critical Temperature Region for Refractory Glass-Forming Substances, Zh. Prikl. Khim. (Leningrad), 1955, vol. 28, no. 10, pp. 1077–1082.Google Scholar
  8. 8.
    Myuller, R.L., Chemical Features of Glass-Forming Polymer Substances and the Nature of Glass Formation, in Stekloobraznoe sostoyanie. Trudy III Vsesoyuznogo soveshchaniya (Proceedings of the Third All-Union Conference on the Vitreous State, Leningrad, Soviet Union, 1959), Leningrad: Academy of Sciences of the Soviet Union, 1959, pp. 61–71.Google Scholar
  9. 9.
    Doremus, R.H., Melt Viscosities of Silica Glasses, Am. Ceram. Soc. Bull., 2003, vol. 82, no. 3, pp. 59–63.Google Scholar
  10. 10.
    Doremus, R.H., Viscosity of Silica, J. Appl. Phys., 2002, vol. 92, no. 12, pp. 7619–7629.CrossRefGoogle Scholar
  11. 11.
    Ojovan, M.I. and Lee, W.E., Viscosity of Network Liquids within the Doremus Approach, J. Appl. Phys., 2004, vol. 95, no. 7, pp. 3803–3810.CrossRefGoogle Scholar
  12. 12.
    Ojovan, M.I., Travis, K.P., and Hand, R.J., Thermodynamic Parameters of Bond in Glassy Materials from Viscosity-Temperature Relationships, J. Phys.: Condens. Matter, 2007, vol. 19.Google Scholar
  13. 13.
    Dure, J.C., Solidity of Viscous Liquids, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, vol. 73, p. 021502.CrossRefGoogle Scholar
  14. 14.
    Avramov, I., Viscosity in Disordered Media, J. Non-Cryst. Solids, 2005, vol. 351, nos. 40–42, pp. 3163–3173.CrossRefGoogle Scholar
  15. 15.
    Pospelov, B.A., The Viscosity of Some Glasses in the Temperature Range of Softening and Annealing: II. The Dependence of the Viscosity of the Glasses on the Temperature, Zh. Fiz. Khim., 1955, vol. 29, no. 1, pp. 70–75.Google Scholar
  16. 16.
    Meerlender, G., Die Erweiterte Jenckel-Gleichung Eine Leistungsfahige Viskositate-Temperatur-Formel, Rheol. Acta, 1967, vol. 6, no. 4, pp. 309–377.Google Scholar
  17. 17.
    Jenckel, E., Zur Temperaturaihangigkeit der Viskosital von Schmelzen, Z. Phys. Chem., 1939, vol. 184, no. 1, pp. 309–319.Google Scholar
  18. 18.
    Waterton, S.C., The Viscosity-Temperature Relationship and Some Inference on the Nature of Molten and of Plastic Glass, J. Soc. Glass Technol., 1932, vol. 16, pp. 244–253.Google Scholar
  19. 19.
    Bredbury, D., Mark, M., and Kleinschmidt, R.V., Viscosity and Density of Lubricating Oils from 0 to 150000 Psig and 32 to 425 F, Trans. ASME, 1951, vol. 73, no. 5, pp. 667–676.Google Scholar
  20. 20.
    Cornelissen, J., van Leeuwen, J.V., and Watterman, H., La Viscosite des Verres Fondus en Function de la Temperature, Chem. Ind. (London), 1957, vol. 77, no. 1, pp. 69–78.Google Scholar
  21. 21.
    Vogel, H., Das Temperaturab-Hangigkeitgesetz der Viskosital von Flussigkeiten, Z. Phys., 1921, vol. 22, pp. 648–651.Google Scholar
  22. 22.
    Fulcher, G., S. Analysis of Recent Measurements of the Viscosity of Glasses, J. Am. Ceram. Soc., 1925, vol. 8, pp. 789–794.CrossRefGoogle Scholar
  23. 23.
    Tamman, G., Stekloobraznoe sostoyanie (The Vitreous State), Moscow: ONTI, 1935 [in Russian].Google Scholar
  24. 24.
    Shishkin, N.I., The Dependence of the Kinetic Properties of Liquids and Glasses on the Temperature, Pressure, and Volume, Zh. Tekh. Fiz., 1956, vol. 26, pp. 1461–1473.Google Scholar
  25. 25.
    Evstrop’ev, K.S., On the Viscosity and Electrical Conductivity of Molten Salts and Glasses, Izv. Akad. Nauk SSSR, Ser. Fiz., 1937, no. 3, pp. 359–375.Google Scholar
  26. 26.
    SciGlass 6.6: Glass Property Information System, Shrewsbury (Massachusetts, United States): Institute of Theoretical Chemistry, 2006.Google Scholar
  27. 27.
    Ferry, J.D., Viscoelastic Properties of Polymers, New York: Interscience, 1962. Translated under the title Vyazkouprugie svoistva polimerov, Moscow: Inostrannaya Literatura, 1963.Google Scholar
  28. 28.
    Frenkel, J., Kinetic Theory of Liquids, Oxford: Clarendon, 1941. Translated under the title Kineticheskaya teoriya zhidkostei, Moscow: Academy of Sciences of the Soviet Union, 1945.Google Scholar
  29. 29.
    Macedo, P.B. and Litovitz, T.A., On the Relative Roles of Free Volume and Activation Energy in the Viscosity of Liquids, J. Chem. Phys., 1965, vol. 42, no. 1, pp. 245–256.CrossRefGoogle Scholar
  30. 30.
    Doolittle, A.K. and Doolittle, D.B., Studies in Newtonian Flow, J. Appl. Phys., 1957, vol. 28, no. 8, pp. 901–909.CrossRefGoogle Scholar
  31. 31.
    Hirai, N. and Eyring, H., Bulk Viscosity of Polymeric Systems, J. Polym. Sci., 1959, vol. 37, no. 1, pp. 51–70.CrossRefGoogle Scholar
  32. 32.
    Kumar, S., Viscosity and Free Volume of Fused Borates and Silicates, Phys. Chem. Glasses, 1963, vol. 4, no. 3, pp. 106–111.Google Scholar
  33. 33.
    Sanditov, D.S., On the Theory of Molecular Mobility in Liquids and Glasses over Broad Temperature and Pressure Ranges, Russ. Phys. J., 1971, vol. 14, no. 2, pp. 151–156.Google Scholar
  34. 34.
    Sanditov, D.S., On the Mechanism of Viscous Flow of Glasses, Fiz. Khim. Stekla, 1976, vol. 2, no. 6, pp. 515–519.Google Scholar
  35. 35.
    Sanditov, D.S., Condition of Glass Transition in Liquids and the Lindemann’s Criterion of Melting in the Excited Atom Model, Dokl. Phys. Chem., 2003, vol. 390, nos. 1–3, pp. 122–125.CrossRefGoogle Scholar
  36. 36.
    Sanditov, D.S., The Excited State Model and an Elementary Act of Softening of Glassy Solids, JETP, 2009, vol. 108, no. 1, pp. 98–110.CrossRefGoogle Scholar
  37. 37.
    Frenkel’ Ya.I., The Relationship between the Different Theories of Viscosity of Liquids, in Soveshchanie po vyazkosti zhidkostei i kolloidnykh rastvorov (Proceedings of the Conference on the Viscosity of Liquids and Colloidal Solutions), Leningrad: Academy of Sciences of the Soviet Union, 1944, vol. 2, pp. 24–29.Google Scholar
  38. 38.
    Cohen, M.H. and Turnbull, D., Molecular Transport in Liquids and Glasses, J. Chem. Phys., 1959, vol. 31, no. 5, pp. 1164–1169.CrossRefGoogle Scholar
  39. 39.
    Nemilov, S.V., Evolution of the Concepts about the Character of Internal Variations in Systems in the Course of the Glass-Liquid Transition, Fiz. Khim. Stekla, 1980, vol. 6, no. 3, pp. 257–268.Google Scholar
  40. 40.
    Anderson, O.L. and Bömmel, H.E., Ultrasonic Absorption in Fused Silica at Low Temperatures and High Frequencies, J. Am. Ceram. Soc., 1955, vol. 38, no. 4, pp. 125–131.CrossRefGoogle Scholar
  41. 41.
    Strakna, R.E. and Savage, H.T., Ultrasonic Relaxation Loss in SiO2, GeO2, B2O3, and As2O3 Glasses, J. Appl. Phys., 1964, vol. 35, no. 5, pp. 1445–1450.CrossRefGoogle Scholar
  42. 42.
    Sanditov, D.S., Thermally Induced Low-Temperature Relaxation of Plastic Deformation in Vitreous Organic Polymers and Silicate Glasses, Polym. Sci., Ser. A, 2007, vol. 49, no. 5, pp. 549–557.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. S. Sanditov
    • 1
    • 2
  • S. B. Munkueva
    • 2
  • A. A. Mashanov
    • 1
  • B. D. Sanditov
    • 1
  1. 1.Buryatia State UniversityUlan-Ude, BuryatiaRussia
  2. 2.Division of Physical Problems, Buryatia Science Center, Siberian BranchRussian Academy of SciencesUlan-Ude, BuryatiaRussia

Personalised recommendations