Glass Physics and Chemistry

, Volume 37, Issue 6, pp 590–595 | Cite as

Investigation of the formation of fractal structures in SiO2 · SnO x · CuO y thin films prepared by the sol-gel method

  • N. K. Plugotarenko
  • V. V. PetrovEmail author
  • V. A. Ivanetz
  • V. A. Smirnov
Proceedings of the First All-Russian Conference “Sol-Gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials, and Disperse Systems” (St. Petersburg, Russia, November 22–24, 2010)


The processes of fractal structure formation have been considered in SiO2 · SnO x · CuO y nanofilms prepared by the sol-gel method from a tetraethoxysilane alchohol solution modified by metal salts. The atomic force microscopy images of these films have been obtained. The surface morphology has been analyzed using the Takens embedding method and Grassberger-Procaccia algorithm. The correlation and fractal dimensions of the film samples and the coefficient of surface area increase have been calculated. The effects of the annealing temperature and concentration of the doping component on the formation of fractal structures in the materials under study have been estimated.


fractal structure thin film nanomaterial surface morphology correlation dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructural Materials), Moscow: Akademiya, 2005 [in Russian].Google Scholar
  2. 2.
    Petrov, V.V. and Korolev, A.N., Nanorazmernye Oksidnye Materialy Dlya Sensorov Gazov (Nano-sized Oxide Materials for Gas Sensors), Taganrog: Taganrog Institute of Technology, Southern Federal University, 2008 [in Russian].Google Scholar
  3. 3.
    Gorshkov, V.S., Savel’ev, V.G., and Vedorov, N.F., Fizicheskaya khimiya silikatov i drugikh tugoplavkikh soedinenii (Physical Chemistry of Silicates and Other Refractory Compounds), Moscow: Vysshaya Shkola, 1988 [in Russian].Google Scholar
  4. 4.
    Kanunnikova, O.M., Mikhailova, S.S., Murav’ev, A.E., Goncharov, O.Yu., Shilova, O.A., and Bubnov, Yu.Z., Specific Features of the Structure of Sol-Gel Silicate Films Doped with Mn and Pt, Glass Phys. Chem., 2006, vol. 32, no. 2, pp. 228–233.CrossRefGoogle Scholar
  5. 5.
    Petrov, V.V., Batalova, M.Z., Plugotarenko, N.K., Vorob’ev, E.V., and Pugolovkina, O.B., Modelling of Processes of Structuring of Solutions in the Formation of Nano-sized Material, Izv. Yuzhn. Fed. Univ.: Tekh. Nauki, 2009, vol. 6, pp. 193–198.Google Scholar
  6. 6.
    Shabanova, N.A., Popov, V.V., and Sarkisov, P.D., Khimiya i tekhnologiya nanodispersnykh oksidov (Chemistry and Technology of Nanodispersed Oxides), Moscow: Akademkniga, 2006 [in Russian].Google Scholar
  7. 7.
    Vikhrov, S.P., Bodyagin, N.V., Larina, T.G., and Mursalov, S.M., Processes of Growth of Disordered Semiconductors in the Context of Self-Organization Theory, Semiconductors, 2005, vol. 39, no. 8, p. 917–923.CrossRefGoogle Scholar
  8. 8.
    Avacheva, T.G., Bodyagin, N.V., Vikhrov, S.P., and Mursalov, S.M., Study of Self-Organization in Disordered Materials Using Information Theory, Semiconductors, 2008, vol. 42, no. 5, pp. 499–504.CrossRefGoogle Scholar
  9. 9.
    Torkhov, N.A., Bozhkov, V.G., Ivonin, I.V., and Novikov, V.A., Determination of the Fractal Dimension for the Epitaxial n-GaAs Surface in the Local Limit, Semiconductors, 2009, vol. 43, no. 1, pp. 33–41.CrossRefGoogle Scholar
  10. 10.
    Elyukhina, O.V., Sokolovskii, G.S., and Kuchinskii, V.I., Self-ordering of Mg and O Isoelectronic Impurities in ZnSe, Semiconductors, 2007, vol. 41, no. 2, pp. 125–129.CrossRefGoogle Scholar
  11. 11.
    Mezdrogina, M.M. Trapeznikova, I.N., Terukov, E.I., Nasredinov, F.S., Seregin, N.P., and Seregin, P.P., Nature of Impurity Centers of Rare-Earth Metals and Self-Organization Processes in a-Si:H Films, Semiconductors, 2002, vol. 36, no. 11, pp. 1252–1259.CrossRefGoogle Scholar
  12. 12.
    Petrov, V.V., Korolev, A.N., Nazarova, T.N., Plugotarenko, N.K., Adamokova, M.N., and Kushkhov, Kh.B., Obtaining of Nanocrystalline Oxide Films of Complex Composition, in Trudy II Mezhdunarodnogo seminara “Teplofizicheskie svoistva veshchestv (zhidkie metally i splavy, nanosistemy)” (Proceedings of the 2nd International Workshop “Thermophysical Properties of Substances (Liquid Metals and Alloys, Nanosystems)”), Kabardino-Balkar State University, Nalchik, 2006, pp. 156–158.Google Scholar
  13. 13.
    Plugotarenco, N.K., Nazarova, T.N., Korolev, A.N., Petrov, V.V., and Semenistaya, T.V., Influence of Processing Methods on the Surface Morphology of the SiOx(SnOy) Films for Gas Sensors Applications, Sens. Electron. Microsyst. Technol., 2006, vol. 2, pp. 30–34.Google Scholar
  14. 14.
    Petrov, V.V., Automated Test Bench for Gas Sensor Calibration, Trudy I Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Sensornaya elektronika i mikrosistemnye tekhnologii” (Proceedings of the I International Scientific and Technical Conference “Sensor Electronics and Microsystems Technologies”), Odessa, Ukraine, 2004, pp. 288–292.Google Scholar
  15. 15.
    Myasnikov, I.A., Sukharev, V.Ya., Kupriyanov, L.Yu., and Zav’yalov, S.A., Poluprovodnikovye sensory v fizikokhimicheskikh issledovaniyakh (Semiconductor Sensors for Physico-Chemical Studies), Moscow: Nauka, 1991 [in Russian].Google Scholar
  16. 16.
    Nicolis, G. and Prigogine, I., Exploring Complexity, New York: Freeman, 1989. Translated under the title Poznanie slozhnogo, Moscow: Mir, 1990Google Scholar
  17. 17.
    Andrievskii, R.A., Hydrogen in Nanostructures, Phys.-Usp., 2007, vol. 177, no. 7, pp. 721–736 Phys.-Usp., 2007, vol. 50, no. 7, pp. 691–704.CrossRefGoogle Scholar
  18. 18.
    Zahn, W. and Zösch, A., The Dependence of Fractal Dimension on Measuring Conditions of Scanning Probe Microscopy, Fresenius’ J. Anal. Chem., 1999, vol. 365, nos. 1–3, pp. 168–172.CrossRefGoogle Scholar
  19. 19.
    Van Put, A., Vertes, A., Wegrzynek, D., Treiger, B., and Van Grieken, R., Quantitative Characterization of Individual Particle Surfaces by Fractal Analysis of Scanning Electron Microscope Images, Fresenius’ J. Anal. Chem., 1994, vol. 350, nos. 7–9, pp. 440–447.CrossRefGoogle Scholar
  20. 20.
    Petrov, V.V., Nazarova, T.N., Kopylova, N.F., Zabluda, O.V., Kisilev, I., and Bruns, M., Study of Physico-Chemical and Electro-Physical Properties, Gas-Sensitive Characteristics of Nanocomposite Films SiO2 · SnOx · CuOy, Nano-Mikrosist. Tekh., 2010, no. 8, pp. 15–21.Google Scholar
  21. 21.
    Yalovega, G.E., Shmatko, V.A., Nazarova, T.N., Petrov, V.V., and Zabluda, O.V., Study of the Phase Composition of Nanocomposite Materials SiO2CuOx, by X-Ray Absorption Spectroscopy and Photoelectron Spectroscopy, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2010, no. 4, pp. 32–36.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. K. Plugotarenko
    • 1
  • V. V. Petrov
    • 1
    Email author
  • V. A. Ivanetz
    • 1
  • V. A. Smirnov
    • 1
  1. 1.Taganrog Institute of TechnologySouthern Federal UniversityTaganrogRussia

Personalised recommendations