Glass Physics and Chemistry

, Volume 34, Issue 6, pp 709–715 | Cite as

Luminescence of modified nonbridging oxygen hole centers in silica and alkali silicate glasses

Article

Abstract

This paper reports on the results of the investigation of the cathodoluminescence spectra of silica and alkali silicate glasses upon excitation with a pulsed electron beam (energy, 180 keV; current density, 700 A/cm2; pulse duration, 2 ns). The luminescence band observed in the energy range 2.4–2.6 eV is assigned to modified structural defects of the ≡Si-O·/Me+ type. These defects are revealed under high-density electronic excitation and, unlike the known L centers in alkali silicate glasses, are interpreted as a variety of nonbridging oxygen hole centers (defects of the dangling bond type) subjected to a disturbing action of the nearest neighbor alkali metal cations. The cathodoluminescence of similar centers is observed in neutron-irradiated silica glasses with lithium impurities; alkali silicate glasses with Li, Na, and K cations; and glasses in the two-alkali Na-K systems. It is established that the energy of the radiative transition of a modified nonbridging oxygen hole center, namely, ≡Si-O·/Me+, depends on the alkali cation type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1979.Google Scholar
  2. 2.
    Silin’, A.R. and Trukhin, A.I., Tochechnye defekty i elementarnye vozbuzhdeniya v kristallicheskom i stekloobraznom SiO 2 (Point Defects and Elementary Excitations in Crystalline and Vitreous SiO2), Riga: Zinatne, 1985 [in Russian].Google Scholar
  3. 3.
    Pacchioni, G., Skuja, L., and Griscom, D.L., Defects in SiO 2 and Related Dielectrics: Science and Technology, Volume 2: NATO Science Series: II. Mathematics, Physics, and Chemistry, Dordrecht, The Netherlands: Kluwer, 2000.Google Scholar
  4. 4.
    Hosono, H., Kajihara, K., Suzuki, T., Ikuta, Y., Skuja, L., and Hirano, M., Vacuum Ultraviolet Optical Absorption Band of Non-Bridging Oxygen Hole Centers in SiO2 Glass, Solid State Commun., 2002, vol. 122, pp. 117–120.CrossRefADSGoogle Scholar
  5. 5.
    Roushdey, S., von Czarnowski, A., and Fitting, H.-J., Cathodoluminescence of Non-Stoichiometric Silica: The Role of Oxygen, J. Non-Cryst. Solids, 2007, vol. 353, pp. 546–549.CrossRefADSGoogle Scholar
  6. 6.
    Kajihara, K., Skuja, L., Hirano, M., and Hosono, H., Interconversion between Non-Bridging Oxygen Hole Center and Peroxy Radical in F2-Laser-Irradiated SiO2 Glass, J. Non-Cryst. Solids, 2004, vols. 345–346, pp. 219–223.CrossRefGoogle Scholar
  7. 7.
    Skuja, L., Kajihara, K., Hirano, M., Saitoh, A., and Hosono, H., An Increased F2-Laser Damage in “Wet” Silica Glass Due to Atomic Hydrogen: A New Hydrogen-Related E’-Center, J. Non-Cryst. Solids, 2006, vol. 352, pp. 2297–2302.CrossRefADSGoogle Scholar
  8. 8.
    Fitting Hans-Joachim, Salh Roushdey, and Schmidt Bernd, Multimodal Electronic-Vibronic Spectra of Luminescence in Ion-Implanted Silica Layers, J. Lumin., 2007, vols. 122–123, pp. 743–746.Google Scholar
  9. 9.
    Fitting, H.-J., Ziems, T., Roushdey, Salh., Zamoryanskaya, M.V., Kolesnikova, K.V., Schmidt, B., and von Czarnowski, A., Cathodoluminescence of Wet, Dry, and Hydrogen-Implanted Silica Films, J. Non-Cryst. Solids, 2005, vol. 351, pp. 2251–2262.CrossRefADSGoogle Scholar
  10. 10.
    Ezz-Eldina, F.M., Mahmouda, H.H., Abd-Elazizb, T.D., and El-Alaily, N.A., Response of Commercial Window Glass to Gamma Doses, Physica B (Amsterdam), 2008, vol. 403, pp. 576–585.ADSGoogle Scholar
  11. 11.
    Jiang, N., On Detection of Non-Bridging Oxygen in Glasses by Electron-Energy-Loss Spectroscopy, Solid State Commun., 2002, vol. 122, pp. 7–10.Google Scholar
  12. 12.
    Skuja, L., Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide, J. Non-Cryst. Solids, 1998, vol. 239, no. 16, pp. 16–48.CrossRefADSGoogle Scholar
  13. 13.
    Cannas, M. and Gelardi, F.M., Vacuum Ultraviolet Excitation of the 1.9-eV Emission Band Related to Nonbridging Oxygen Hole Centers in Silica, Phys. Rev. B: Condens. Matter, 2004, vol. 69, p. 153201.Google Scholar
  14. 14.
    Skuja, L., The Origin of the Intrinsic 1.9-eV Luminescence Band in Glassy SiO2, J. Non-Cryst. Solids, 1994, vol. 179, pp. 51–69.CrossRefADSGoogle Scholar
  15. 15.
    Suzuki, T., Skuja, L., Kajihara, K., Hirano, M., Kamiya, T., and Hosono, H., Electronic Structure of Oxygen Dangling Bond in Glassy SiO2: The Role of Hyperconjugation, Phys. Rev. Lett., 2003, vol. 90, no. 18, p. 186404-4–1.CrossRefADSGoogle Scholar
  16. 16.
    Trukhin, A.N., Intenberg, A.E., Savel’ev, V.L., Glebov, L.B., and Tolstoi, N.N., Model of the Electronic Structure of Localized States in Glassy Sodium Trisilicate, Fiz. Tverd. Tela (Leningrad), 1985, vol. 27, no. 10, pp. 3101–3104 [Sov. Phys. Solid State (Engl. transl.), 1985, vol. 27, no. 10, pp. 1862–1864].Google Scholar
  17. 17.
    Gubanov, V.A., Zatsepin, A.F., Kortov, V.S., Freidman, S.P., and Cherlov, G.B., Structure of the Electronic Levels of Nonbridging Oxygen Atoms in Silica and Alkali Silicate Glasses, Fiz. Khim. Stekla, 1987, vol. 13, no. 6, pp. 811–817.Google Scholar
  18. 18.
    Trukhin, A.N., Localized States in Wide-Gap Glasses: Comparison with Relevant Crystals, J. Non-Cryst. Solids, 1995, vol. 189, pp. 1–15.CrossRefADSGoogle Scholar
  19. 19.
    Zatsepin, D.A., Zatsepin, A.F., Solomonov, V.I., and Shchapova, J.V., Electronic and Vibrational Structure of Intrinsic Luminescence Centers in Glasses Excited by Pulsed Electron Beam, in Proceedings of the International Conference “Radiation Effects in Insulators” (REI-1997), Knoxville, TN, United States, 1997, Knoxville, 1997, p. 90.Google Scholar
  20. 20.
    Zatsepin, D.A., Zatsepin, A.F., Solomonov, V.I., and Cholakh, S.O., Pulsed Cathodoluminescence and Vibrational Structure of Localized Electronic States in Alkali Silicate Glasses, Fiz. Khim. Stekla, 2004, vol. 30, no. 5, pp. 544–552 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 5, pp. 400–405].Google Scholar
  21. 21.
    Zatsepin, D.A., Zatsepin, A.F., Solomonov, V.I., and Cholakh, S.O., Vibrational Structure of Electronic States in Alkali-Silicate Glasses, Phys. Status Solidi C, 2004, vol. 1, no. 11, pp. 2912–2915.CrossRefGoogle Scholar
  22. 22.
    Zatsepin, A.F., Zatsepin, D.A., Solomonov, V.I., Guseva, V.B., and Cholakh, S.O., Pulsed Cathodoluminescence of Two-Alkali Sodium Potassium Silicate Glasses, Fiz. Khim. Stekla, 2006, vol. 32, no. 1, pp. 28–32 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 1, pp. 28–32].Google Scholar
  23. 23.
    Mesyats, G.A., Mikhailov, S.G., Osipov, V.V., and Solomonov, V.I., Pulsed Cathodoluminescence of Minerals, Pis’ma Zh. Tekh. Fiz., 1992, vol. 18, no. 3, pp. 87–90 [Tech. Phys. Lett. (Engl. transl.), 1992, vol. 18, no. 2, pp. 93–94].Google Scholar
  24. 24.
    Mikhailov, S.S., Osipov, V.V., and Solomonov, V.I., Periodic-Pulse Cathodoluminescence of Minerals, Zh. Tekh. Fiz., 1993, vol. 63, no. 2, pp. 52–64 [Tech. Phys. (Engl. transl.), 1993, vol. 38, no. 2, pp. 85–90].Google Scholar
  25. 25.
    Mesyats, G.A., Solomonov, V.I., Mikhailov, S.G., and Osipov, V.V., On the Possibility of Refining the Structure of Energy Levels in Solids, Dokl. Akad. Nauk, 1994, vol. 339, no. 6, pp. 757–760 [Phys. Dokl. (Engl. transl.), 1994, vol. 39, no. 12, pp. 862–865].Google Scholar
  26. 26.
    Trukhin, A.N., Tolstoi, M.N., Glebov, L.B., and Savelev, V.L., Elementary Electronic Excitations in Pure Sodium Silicate Glasses, Phys. Status Solidi B, 1980, vol. 99, no. 1, pp. 155–162.CrossRefGoogle Scholar
  27. 27.
    Trukhin, A.N., Fizika i khimiya stekloobrazuyushchikh sistem (Physics and Chemistry of Glass-Forming Systems), Riga: Stuchka Latvian State University, 1980 [in Russian].Google Scholar
  28. 28.
    Trukhin, A.N., Savel’ev, V.L., Glebov, L.B., and Tolstoi, M.N., Excitation of Intrinsic Luminescence of Pure Sodium Silicate Glasses, Fiz. Khim. Stekla, 1979, vol. 5, no. 6, pp. 702–706.Google Scholar
  29. 29.
    Matson, D.W., Sharma, S.K., and Philpotts, J.A., The Structure of High-Silica Alkali-Silicate Glasses, J. Non-Cryst. Solids, 1953, vol. 58, pp. 323–352.CrossRefGoogle Scholar
  30. 30.
    Zatsepin, A.F., Biryukov, D.Yu., Kortov, V.S., and Cholakh, S.O., Nonradiative Relaxation of Photoexcited O10 Centers in Glassy SiO2, Fiz. Tverd. Tela (St. Petersburg), 2002, vol. 44, no. 9, pp. 1596–1560 [Phys. Solid State (Engl. transl.), 2002, vol. 44, no. 9, pp. 1671–1675].Google Scholar
  31. 31.
    Brekhovskikh, S.M. and Tyul’nin, V.A., Radiatsionnye tsentry v neorganicheskikh steklakh (Radiation Centers in Inorganic Glasses), Moscow: Energoatomizdat, 1988 [in Russian].Google Scholar
  32. 32.
    Teixeira, M.I., Ferraz, G.M., and Caldas, L.V.E., EPR Dosimetry Using Commercial Glasses for High Gamma Doses, Appl. Radiat. Isot., 2005, vol. 62, pp. 365–370.PubMedCrossRefGoogle Scholar
  33. 33.
    Engin, B., Aydaş, C., and Demirta, H., ESR Dosimetric Properties of Window Glass, Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 243, pp. 149–155.CrossRefADSGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. F. Zatsepin
    • 1
  • V. B. Guseva
    • 2
  • D. A. Zatsepin
    • 3
  1. 1.Ural State Technical UniversityYekaterinburgRussia
  2. 2.Ural State UniversityYekaterinburgRussia
  3. 3.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations