Glass Physics and Chemistry

, Volume 33, Issue 3, pp 232–236 | Cite as

Synthesis, structure, and properties of vanadium pentoxide nanotubes

  • A. V. Grigorieva
  • A. B. Tarasov
  • E. A. Goodilin
  • V. V. Volkov
  • Yu. D. Tretyakov
Proceedings of the Topical Meeting of the European Ceramic Society “Structural Chemistry of Partially Ordered Systems, Nanoparticles, and Nanocomposites” (St. Petersburg, Russia, June 27–29, 2006)

Abstract

Vanadium oxide nanotubes are synthesized by the hydrothermal method with the use of polycrystalline vanadium oxide V2O5 and 1-hexadecylamine as a structural template. The structure of the vanadium oxide nanotubes is investigated using small-angle X-ray diffraction and transmission electron microscopy. It is demonstrated that the structure of the vanadium oxide nanotubes is characterized by a combination of fragments with different interlayer distances associated with the twisting of oxide layers in the form of “nanorolls.” The thermal stability, morphology, and surface properties of the nanotubes, as well as the role of the organic template in the formation of their structure, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Satishkumar, B.C., Govindraj, A., Nath, M., and Rao, C.N.R., Synthesis of Metal Oxide Nanorods Using Carbon Nanotubes as Template, J. Mater. Chem., 2000, vol. 10,no. 10, pp. 2115–2119.CrossRefGoogle Scholar
  2. 2.
    Volkov, V.L., Zakharova, G.S., and Kuznetsova, M.V., New Vanadium Oxide Tubules: Synthesis and Properties, Zh. Neorg. Khim., 2004, vol. 49, no. 7, pp. 1165–1169 [Russ. J. Inorg. Chem. (Engl. transl.), 2004, vol. 49, no. 7, pp. 1068–1072].Google Scholar
  3. 3.
    Pillai, K.S., Krumeic, F., Muhr, H.-J., Niederberger, M., and Nesper, R., The First Oxide Nanotubes with Alternating Inter-Layer Distances, Solid State Ionics, 2001, vols. 141–142, pp. 185–190.CrossRefGoogle Scholar
  4. 4.
    Patzke, G.R., Krumeich, F., and Nesper, R., Oxidic Nanotubes and Nanorods—Anisotropic Modules for a Future Nanotechnology, Angew. Chem., 2002, vol. 41, no. 14, pp. 2446–2461.CrossRefGoogle Scholar
  5. 5.
    Zakharova, G.S., Volkov, V.L., Ivanovskaya, V.V., and Ivanovskii, A.L., Nanotrubki i rodstvennye nanostruktury oksidov metallov (Metal Oxide Nanotubes and Related Nanostructures), Yekaterinburg: Ural Division of the Russian Academy of Sciences, 2005 [in Russian].Google Scholar
  6. 6.
    Liu, J., Wang, X., Peng, Q., and Li, Y., Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials, Adv. Mater., 2005, vol. 17, no. 6, pp. 764–767.CrossRefGoogle Scholar
  7. 7.
    Chandrappa, G.T., Steunou, N., Cassaignon, S., Bauvais, C., and Livage, J., Hydrothermal Synthesis of Vanadium Oxide Nanutubes from V2O5 Gels, Catal. Today, 2003, vol. 78, no. 1, pp. 85–89.CrossRefGoogle Scholar
  8. 8.
    Wang, Y. and Cao, G., Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides, Chem. Mater., 2006, vol. 18, no. 12, pp. 2787–2804.CrossRefGoogle Scholar
  9. 9.
    Setterfield, Ch., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1980. Translated under the title Prakticheskii kurs geterogennogo kataliza, Moscow: Mir, 1984.Google Scholar
  10. 10.
    Svergun, D.I. and Feigin, L.A., Rentgenovskoe i neitronnoe malouglovoe rasseyanie (Small-Angle X-Ray Scattering and Small-Angle Neutron Scattering), Moscow: Nauka, 1986 [in Russian].Google Scholar
  11. 11.
    Chen, W., Peng, J., Mai, L., Zhu, Q., and Xu, Q., Synthesis of Vanadium Oxide Nanotubes from V2O5 Sols, Mater. Lett., 2004, vol. 58, nos. 17–18, pp. 2275–2278.CrossRefGoogle Scholar
  12. 12.
    Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-i YaMR-spektroskopii v organicheskoi khimii (Application of UV, IR, and NMR Spectroscopy in Organic Chemistry), Moscow: Vysshaya shkola, 1971 [in Russian].Google Scholar
  13. 13.
    Pyoryshkov, D.V., Grigorieva, A.V., Goodilin, E.A., Semenenko, D.A., Volkov, V.V., Dembo, K.A., and Tretyakov, Yu.D., Effect of Preparation Conditions on the Ordering of Structural Elements in Vanadium Pentoxide Xerogels, Dokl. Akad. Nauk, Ser. Khimiya., 2006, vol. 406, no. 1, pp. 9–13 [Dokl. Chem. (Engl. transl.), 2006, vol. 406, no. 1, pp. 9–13].Google Scholar
  14. 14.
    Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963. Translated under the title Infrakrasnye spektry neorganicheskikh i koordinatsionnykh soedinenii, Moscow: Mir, 1966.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. V. Grigorieva
    • 1
  • A. B. Tarasov
    • 1
  • E. A. Goodilin
    • 1
  • V. V. Volkov
    • 2
  • Yu. D. Tretyakov
    • 1
  1. 1.Faculty of Materials ScienceLomonosov Moscow State UniversityLeninskie gory, MoscowRussia
  2. 2.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations