Glass Physics and Chemistry

, Volume 33, Issue 1, pp 86–95 | Cite as

Molecular dynamics simulation of the physicochemical properties of silicon nanoparticles containing 73 atoms

  • A. E. Galashev
  • V. A. Polukhin
  • I. A. Izmodenov
  • O. R. Rakhmanova


The physicochemical properties of 73-atom silicon nanoparticles that have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene are investigated using the molecular dynamics method. Analysis of the behavior of the internal energy, the radial distribution function, the distribution of bond angles, and the specific heat at a constant pressure Cp in the temperature range 10–1710 K indicates that a crystalline nanoparticle undergoes melting at a temperature of 710 K and that the structural transformations occurring in particles with an irregular atomic packing exhibit specific features. It is demonstrated that the temperature dependence of the self-diffusion coefficient follows a linear behavior. Local deviations from the linear behavior are most pronounced for the crystalline nanoparticle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao, Y., Kim, Y.-H., Du, M.-H., and Zhang, S.B., First-Principles Prediction of Icosahedral Quantum Dots for Tetravalent Semiconductors, Phys. Rev. Lett., 2004, vol. 93, p. 015502.Google Scholar
  2. 2.
    Chen, Z., Jiao, H., Seifert, G., Horn, A.H.C., Yu, D., Clark, T., Thiel, W., and von Ragué Schleyer, P., The Structure and Stability of Si60 and Ge60 Cages: A Computational Study, J. Comput. Chem., 2003, vol. 24, pp. 948–953.CrossRefGoogle Scholar
  3. 3.
    Nishio, K., Koga, J., Yamaguchi, T., and Yonezawa, F., Theoretical Study of Light-Emission Properties of Amorphous Silicon Quantum Dots, Phys. Rev. B: Condens. Matter, 2003, vol. 67, p. 195304.Google Scholar
  4. 4.
    Park, N.-M., Choi, C.-J., Seong, T.-Y., and Park, S.-J., Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride, Phys. Rev. Lett., 2001, vol. 86, pp. 1355–1357.CrossRefGoogle Scholar
  5. 5.
    Kim, B.-H., Cho, C.-H., Kim, T.-W., Park, N.-M., Sung, G.-Y., and Park, S.-J., Photoluminescence of Silicon Quantum Dots in Silicon Nitride Grown by NH3 and SiH4, Appl. Phys. Lett., 2005, vol. 86, p. 091908.CrossRefGoogle Scholar
  6. 6.
    Tersoff, J., New Empirical Model for the Structural Properties of Silicon, Phys. Rev. Lett., 1986, vol. 56, no. 6, pp. 632–635.CrossRefGoogle Scholar
  7. 7.
    Tersoff, J., New Empirical Approach for the Structure and Energy of Covalent Systems, Phys. Rev. B: Condens. Matter, 1988, vol. 37, no. 10, pp. 6991–7000.Google Scholar
  8. 8.
    Vink, R.L.C., Barkema, G.T., van der Weg, W.F., and Mousseau, N., Fitting the Stillinger-Weber Potential to Amorphous Silicon, J. Non-Cryst. Solids, 2001, vol. 282, pp. 248–255.CrossRefGoogle Scholar
  9. 9.
    Zhang, L. and Jiang, S., Molecular Simulation Study of Nanoscale Friction for Alkyl Monolayers on Si(111), J. Chem. Phys., 2002, vol. 117, no. 4, pp. 1804–1811.CrossRefGoogle Scholar
  10. 10.
    Polukhin, V.A. and Vatolin, N.A., Carbon: From a Melt to a Fullerene, Rasplavy, 1998, no. 4, pp. 3–32.Google Scholar
  11. 11.
    Spravochnik khimika (A Handbook for Chemists), Nikol’skii, V.P., Ed., Leningrad: Khimiya, 1971, vol. 1 [in Russian].Google Scholar
  12. 12.
    Bellisent, R., Menelle, A., Howells, W.S., Wright, A.C., Brunier, T.M., Sinclair, R.N., and Jansen, F., The Structure of Amorphous Si: H Using Steady-State and Pulsed Neutron Sources, Physica B (Amsterdam), 1989, vols. 156–157, pp. 217–219.Google Scholar
  13. 13.
    Kubicki, J.D. and Lasaga, A.C., Molecular Dynamics Simulations of SiO2 Melt and Glass: Ionic and Covalent Moldels, Am. Mineral., 1988, vol. 73, pp. 941–955.Google Scholar
  14. 14.
    Zachariah, M.R., Carrier, M.J., and Blaisten-Barojas, E., Properties of Silicon Nanoparticles: A Molecular Dynamics Study, J. Phys. Chem., 1996, vol. 100, pp. 14856–14864.CrossRefGoogle Scholar
  15. 15.
    Hawa, T. and Zachariah, M.R., Internal Pressure and Surface Tension of Bare and Hydrogen Coated Silicon Nanoparticles, J. Chem. Phys., 2004, vol. 121, no. 18, pp. 9043–9049.CrossRefGoogle Scholar
  16. 16.
    Miranda, C.R. and Antonelli, A., Transitions between Disordered Phases in Supercooled Liquid Silicon, J. Chem. Phys., 2004, vol. 120, no. 24, pp. 11672–11676.CrossRefGoogle Scholar
  17. 17.
    Bazarov, I.P., Termodinamika (Thermodynamics), Moscow: Vysshaya Shkola, 1976 [in Russian].Google Scholar
  18. 18.
    Kawazoe, Y., Kondow, T., and Ohno, K. Clusters and Nanomaterials: Theory and Experiment, Berlin: Springer-Verlag, 2002.Google Scholar
  19. 19.
    Baidakov, V.G., Galashev, A.E., and Skripov, V.P., Stability of a Superheated Crystal in the Molecular Dynamics Model of Argon, Fiz. Tverd. Tela (Leningrad), 1980, vol. 22, no. 9, pp. 2681–2687 [Sov. Phys. Solid State (Engl. transl.), 1980, vol. 22, no. 9, pp. 1565–1568].Google Scholar
  20. 20.
    Nishio, K., Morishita, T., Shinoda, W., and Mikami, M., Molecular Dynamics Simulation of Icosahedral Si Quantum Dot Formation from Liquid Droplets, Phys. Rev. B: Condens. Matter, 2005, vol. 72, p. 24532.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. E. Galashev
    • 1
  • V. A. Polukhin
    • 2
  • I. A. Izmodenov
    • 3
  • O. R. Rakhmanova
    • 3
  1. 1.Institute of Thermal Physics, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metallurgy, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  3. 3.Institute of Industrial Ecology, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations