Advertisement

Geology of Ore Deposits

, Volume 60, Issue 8, pp 698–707 | Cite as

Niobium Minerals As Indicators of a Genetic Link Between Tin-Bearing Zwitter and Lithium–Fluorine Granite of the Verkhneurmiysky Massif in the Amur River Region

  • V. I. AlekseevEmail author
  • K. G. Sukhanova
  • Yu. B. Marin
Minerals and Mineral Assemblages
  • 25 Downloads

Abstract

Niobium minerals in zwitter and lithium–fluorine granite of the Verkhneurmiysky granitic massif in the Amur River region—fergusonite-(Y), euxenite-(Y), samarskite-(Yb), aeschynite, Nb-bearing wolframite— have been described and the similarity of their species composition established. The same-named and crystal-chemically allied minerals from zwitter and granite are characterized by similar complexes of such trace elements as W, REE, Mn, Fe, Pb, U, and Sc. A genetic link between Sn-bearing zwitter and Li–F granite is stated. Compositional varieties of niobium minerals in granite and zwitter reflect a change in the physicochemical conditions of mineral formation, when the magmatic stage is followed by a pneumatolytic–hydrothermal process. The postmagmatic evolution of niobium minerals is characterized by increased concentrations of Y, Pb, U, Fe and decreased concentrations of W, Ta, REE, Ti, Sc, and Th. The mineral occurrences in the western sector of the Verkhneurmiysky Cu–W–Sn cluster are appraised as promising for Nb, Y, and REE. Fergusonite, samarskite, euxenite, and Nb-bearing wolframite are indicators of rare metal mineralization.

Keywords

fergusonite euxenite samarskite aeschynite wolframite zwitter lithium–fluorine granite rare metal mineralization tungsten–tin deposit Verkhneurmiysky granitic massif Amur River region Russian Far East 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, I.V., Modeli endogennogo tantalo-niobievogo orudeneniya (Models of Endogenous Tantalum–Niobium Ore Formation), Moscow: Nauka, 1973.Google Scholar
  2. Alekseev, V.I., Metasomatic zoning of ore fields in the Badzhalsky area (Amur Region), Zap. Vsesoyuzn. Mineral. O-va, 1989, no. 5, pp. 27–37.Google Scholar
  3. Alekseev, V.I., Litii-ftoristye granity Dal’nego Vostoka (Far East Lithium–Fluorine Granites), St-Petersburg: St-Petersburg Gorny Univ., 2014.Google Scholar
  4. Alekseev, V.I., and Marin, Yu.B., Composition and evolution of the accessory mineralization of Li–F granites in the Far East as indicators of their ore potential, Geol. Ore Deposits, 2015, vol. 57, no. 8, pp. 635–644.CrossRefGoogle Scholar
  5. Beskin, S.M., Marin, Yu.B., Matias, V.V., and Gavrilova, S.P., What is “the rare-metal granite,” Zap. Mineral. O-va, 1999, no. 6, pp. 28–40.Google Scholar
  6. Beskin, S.M. and Marin, Yu.B., Complex systematization of tantalum and tantalum-niobium deposits, Zap. Mineral. O-va, 2015, no. 3, pp. 45–54.Google Scholar
  7. Bogdanov, V.I., Kokorin, A.M., Korostelev, P.G., et al., The composition and genesis of the Pravourmiyskaya tin ore zone, Mineralogiya i geokhimiya olovorudnykh mestorozhdenii, (Mineralogy and Geochemistry of Tin Ore Deposits), Vladivostok: DVNTs AN SSSR, 1979, pp. 36–51.Google Scholar
  8. Bolotnikov, A.F., Kravchenko, N.S., and Krutov, N.K., Magmatizm i rudonosnost Badzhal’skogo raiona (Magmatism and Ore Potential of the Badzhal Area), Khabarovsk: DVIMS, 1975.Google Scholar
  9. Borovikov, A.A., Goverdovskiy, V.A., Borisenko, A.S., et al., Composition and metal contents of ore-forming fluids of the Kalguty Mo–W(Be) deposit (Gorny Altai), Russ. Geol. Geophys., 2016, vol. 57, no. 4, pp. 647–662.CrossRefGoogle Scholar
  10. Brodskaya, R.L. and Marin, Yu.B., Ontogenic analysis of mineral individuals at micro-and nanolevel for the restoration of ore-forming conditions and assessment of mineral processing properties, J. of Mining Institute, 2016, vol. 219, pp. 369–376.Google Scholar
  11. Brusnitsyn, A.I., Panova, E.G., and Smolensky, V.V., Finding of lithium–fluorine granites within the Verhneurmiysky ore district, Izv. Vyssh. Uchenb. Zaved., Geol. Razvedka, 1993, no. 6, pp. 150–153.Google Scholar
  12. Burde, B.I. and Kravchenko, N.S., Facial-genetic series of tin ore occurrence by the example of the ore clusters of the Amur River region, Mineralogiya metamorficheskikh i rudnykh obrazovanii of Dal’negj Vostoka (Mineralogy of the Far East Metamorphic and Ore Formations), Vladivostok: DVNTs AN SSSR, 1981, 13–31.Google Scholar
  13. Duran, C.J., Seydoux-Guillaume, A.M., Bingen, B., et al., Fluid-mediated alteration of (Y, REE, U, Th)–(Nb, Ta, Ti) oxide minerals in granitic pegmatite from the Evje–Iveland district, southern Norway. Mineral. Petrol., 2016, vol. 110, no. 5, pp. 581–599.Google Scholar
  14. Gavrilenko, V.V. and Sakhonenok, V.V., Osnovy geokhimii redkikh litofil’nykh metallov (Principles of Trace Lithophile Metal Geochemistry), Leningrad: LGU, 1986.Google Scholar
  15. Gavrilenko, V.V., Eflmenko, S.A., Tkachenko, G.A., et al., Geological–structural and mineralogical-geochemical features of the Pravourmijsky deposits. Geol. Rudn. Mestorozhd., 1992, no. 6, pp. 34–47.Google Scholar
  16. Gavrilenko, V.V., Gajdamako, I.M., and Smolensky, V.V., Rare earth elements, scandium and niobium in wolframites of the Badjal ore districts (The Far East), Zap. Mineral. Ova, 1995, no. 3, pp. 48–56.Google Scholar
  17. Gavrilenko, V.V. and Panova, E.G., Geokhimiya, genesis, i tipomorfizm mineralov mestorozhdenii olova i vol’frama, (Geochemistry, Origin, and Mineralogical Peculiarities of the Tin and Tungsten Ore Deposits), St. Petersburg: Nevskiy kurier, 2001.Google Scholar
  18. Geodynamics, magmatism and metallogeny of the Russian East. Ed. Khanchuk A.I. Vladivostok: Dalnauka, 2006, vol. 2, p. 981 (in Russian).Google Scholar
  19. Geologiya olovorudnykh mestorozhdenii SSSR (Geology of Tin Deposits of the USSR), Lugov, S.F., Eds., Moscow: Nedra, 1986.Google Scholar
  20. Gonevchuk, V.G., Olovonosnye magmaticheskie sistemy Dal’nego Vostoka: magmatizm I rudogenez (Tin-Bearing Systems of the Far East: Magmatism and Ore Genesis), Vladivostok: Dalnauka, 2002.Google Scholar
  21. Gorzhevskaya, S.A., Sidorenko, G.A., and Ginzburg, A.I., Titano-tantalo–niobaty (svoistva, osobennosti sostava, i usolviya obrazovaniya (Titanium–Tantalum–Niobates: Properties, Composition, and Formation condition), Moscow: Nedra, 1974.Google Scholar
  22. Grigoryev, S.I., The composition of Late Mesozoic granites in the Badzhalsky and Komsomolsky ore areas, their petrogenesis and relation with ore body. Reg. Geol. Metallogen., 1997, no. 6, pp. 103–115.Google Scholar
  23. Harlaux, M., Marignac, Ch., Cuney, M., et al., Nb–Ti–Y–HREE–W–U oxide minerals with uncommon compositions associated with the tungsten mineralization in the Puy-Les-Vignes deposit (Massif Central, France): evidence for rare-metal mobilization by late hydrothermal fluids with a peralkaline signature, Can. Mineral., 2015, vol. 53, no. 4, pp. 653–672.Google Scholar
  24. Hien-Dinh, T.T., Dao, D.A., Tran, T., et al., Lithium-rich albite–topaz-lepidolite granite from Central Vietnam: a mineralogical and geochemical characterization, Eur. J. Miner, 2017, vol. 29, no. 1, pp. 35–52.CrossRefGoogle Scholar
  25. Kuzmenko, M.V. and Eskova, E.M., Tantal i niobii (Tantalum and Niobium), Moscow: Nauka, 1968.Google Scholar
  26. Marin, Yu.B., Skublov, G.T., and Gulbin, Yu.L., Mineralogical and geochemical criteria of local forecasting rare metal deposits, Mineralogicheskoe kartirovanie i indicatory orudeneniya (Mineralogical Mapping and Indicators of Mineralization), Leningrad: Nauka, 1990, pp. 67–94.Google Scholar
  27. Rub, A.K. and Rub, M.G., Redkometal’nye granity Primorya (Rare-Metal Granite of the Amur River Region), Moscow: VIMS, 2006.Google Scholar
  28. Rundqvist, D.V., Denisenko, V.K., and Pavlova, I.G., Greizenovye mestorozhdeniya (ontogenez i filogenez) (Greisen Deposits (Ontogeny and Phylogeny), Moscow: Nedra, 1971.Google Scholar
  29. Semenov, E.I., Orudenenie i mineralizatsiya redkikh zemel, toriya i urana, (Ores and Mineralization of Rare Earths, Thorium, and Uranium (Lanthanides and Actinides), Moscow: GEOS, 2001.Google Scholar
  30. Semenyak, B.I., About “zwitters” of the Verkhneurmiyskiy ore field, Rudnye mestorozhdeniya Dal’nego Vostoka (Far East Ore Deposits), Vladivostok; DVNTs AN SSSR, 1983, pp. 20–25.Google Scholar
  31. Semenyak, B.I., Efimenko, S.A., Korostelev, P.G., and Tkachenko, G.A., Metallogeny of the Badzhalsky ore district, Metallogeniya glavnykh rudnykh raionov Dal’nego Vostoka (Metallogeny of the Main Ore Districts of the Far East), Vladivostok: FEB USSR AS, 1988, pp. 57–84.Google Scholar
  32. Simmons, W.B., Hanson, S.L., and Falster, A.U., Samarskite-( Yb): a new species of the samarskite group from the Little Patsy pegmatite, Jefferson county, Colorado, Can. Mineral., 2006, vol. 44, pp. 1119–1125.Google Scholar
  33. Singh, Y., Pandit, P.S.C., Bagora, S., and Jain, P.K., Mineralogy, geochemistry, and genesis of co-genetic granite–pegmatite-hosted rare metal and rare earth deposits of the Kawadgaon area, Bastar craton, Central India, J. Geol. Soc. India, 2017, vol. 89, no. 2, pp. 115–130.CrossRefGoogle Scholar
  34. Vasiljev, N.V., Chevychelov, V.Yu., Zaraisky, G.P., et al., Peculiarities of tantalum–niobium mineralization of Taikeusky ore cluster (Polar Urals), Zap. Mineral. O-va, 2008, no. 5, pp. 1–16.Google Scholar
  35. Vinogradova, L.G., Barabanov, V.F., and Sorokin, N.D., About distribution of iron, manganese, niobium and scandium in wolframites, Zap. Ross. Mineral. O-va, 1980, no. 3, pp. 352–358.Google Scholar
  36. Voloshin, A.V., Tantalo-niobaty. Sistematika, kristallokhimiya i evolyutsiya mineraloobrazovaniya v granitnykh pegmatitakh (Tantalo-niobates. Systematics, Crystal Chemistry, and Evolution of Mineral Foramtion in Granite Pegmatites), Sankt Petersburg: Nauka, 1993.Google Scholar
  37. Watanabe, Y., Kon, Y., Echigo T., and Kamei, A., Differential fractionation of rare earth elements in oxidized and reduced granitic rocks: implication for heavy rare earth enriched ion adsorption mineralization, Resource Geol., 2017, vol. 67, no. 1, pp. 35–52.CrossRefGoogle Scholar
  38. Xiong, Y.-Q., Shao, Y.-J., Zhou, H.-D., et al., Ore-forming mechanism of quartz-vein-type W–Sn deposits of the Xitian district in SE China: Implications from the trace element analysis of wolframite and investigation of fluid inclusions, Ore Geol. Rev., 2017, vol. 83, pp. 152–173.CrossRefGoogle Scholar
  39. Yang, W.-B., Niu, H.-C., Shan, Q., et al., Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization, Miner. Deposita, 2013, vol. 49, no. 4, pp. 451–470.CrossRefGoogle Scholar
  40. Yuan, S., Peng, J., Hu, R., et al., A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Miner. Deposita, 2008, vol. 43, pp. 375–382.CrossRefGoogle Scholar
  41. Yurgenson, G.A., Tipomorfizm i rudnye formatsii (Typomorphism and Ore Formations) Novosibirsk: Nauka, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Alekseev
    • 1
    Email author
  • K. G. Sukhanova
    • 1
  • Yu. B. Marin
    • 1
  1. 1.St. Petersburg Mining UniversitySt. PetersburgRussia

Personalised recommendations