Geology of Ore Deposits

, Volume 60, Issue 6, pp 497–512 | Cite as

Thermal Convection of Fluids as a Possible Mechanism for the Formation of the Unique Streltsovka and Antei Uranium Deposits (Eastern Transbaikalia)

  • A. A. PekEmail author
  • V. I. Malkovsky
  • V. A. Petrov


The hydrothermal molybdenum–uranium deposits of the Streltsovka ore field are localized in a volcanic caldera of Late Mesozoic age. The paper presents the results of numerical modeling of free thermal convection of fluids in the residual thermal field of the consolidated magma chamber of the Streltsovka caldera, which justifies the idea of thermoconvective mechanism for the formation of the structurally conjugate Streltsovka and Antei deposits. The process of fluid heat and mass transfer in the Antei–Streltsovka oreforming system self-organized into a convection cell with a fluid circulation circuit including a descending convection branch along the ring-fault zone of the caldera, a lateral flow branch from the descending to the ascending convection branch in the caldera’s basement rocks, an ascending convection branch along faults of the Antei deposit, and a lateral return branch from the ascending to the descending convection branch along the caldera’s volcano-sedimentary rock fill, in which the ores of the Streltsovka deposit are localized. At the same time, formation of the total reserves of the Antei–Streltsovka deposit, largest in this ore field, was facilitated by uranium sourced, during the hydrothermal ore-forming process, not only from the uranium-rich rocks of the consolidated magma chamber, but also from the granitic host rocks of the Streltsovka caldera basement.


free thermal convection of fluids volcanic caldera uranium deposits hydrothermal mineralization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleshin, A.P., Velichkin, V.I., and Krylova, T.L., Genesis and formation conditions of deposits in the unique Strel’tsovka molybdenum–uranium ore field: new mineralogical, geochemical, and physicochemical evidence, Geol. Ore Deposits, 2007, no. 5, pp. 392–412.CrossRefGoogle Scholar
  2. Andreeva, O.V. and Golovin, V.A., Metasomatic processes at uranium deposits of Tulukuev Caldera, Eastern Transbaikal Region, Russia, Geol. Ore Deposits, 1998, vol. 40, no. 3, pp. 184–196.Google Scholar
  3. Andreeva, O.V., Vol’fson, I.F., Golovin, V.A., and Rossman, G.I., Uranium behavior during low-temperature alteration of host rocks at the uranium deposits, Geokhimiya, 1990, no. 2, pp. 206–214.Google Scholar
  4. Borisov, M.V., Geokhimicheskie i termodinamicheskie modeli zhil’nogo gidrotermal’nogo rudoobrazovaniya (Geochemical and Thermodynamic Models of Hydrothermal Ore Formation), Moscow: Nauchnyi mir, 2000.Google Scholar
  5. Burov, E.B. and Guillou-Frotiier, L., Thermomechanical behavior of large ash-flow calderas, J. Geophys. Res., 1999, vol. 104, no. B10, pp. 23081–23109.Google Scholar
  6. Cathles, L.M., An analysis of the cooling of intrusives by ground-water convection which includes boiling, Econ. Geol., 1977, vol. 72, pp. 804–826.CrossRefGoogle Scholar
  7. Chabiron, A., Alyoshin, A.P., Cuney, M., Deloule, E., Golubev, V.N., Velitchkin, V.I., and Poty, B., Geochemistry of the rhyolitic magmas from the Streltsovska caldera (Transbaikalia, Russia): a melt inclusion study, Chem. Geol., 2001, vol. 175, pp. 273–290.Google Scholar
  8. Chabiron, A., Cuney, M., and Poty, B., Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia), Mineral. Deposita, 2003, vol. 38, pp. 127–140.CrossRefGoogle Scholar
  9. Chernyshev, I.V. and Golubev, V.P., The Strel’tsovskoe Deposit, Eastern Transbaikalia: isotope dating of mineralization in Russia’s largest uranium deposit, Geochem. Int., 1996, vol. 34, no. 10, pp. 834–846.Google Scholar
  10. Faulkner, D.R., Jackson, C.A.L., Lunn R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J., and Withjack, M.O., A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Structural Geol., 2010, vol. 32, pp. 1557–1575.CrossRefGoogle Scholar
  11. Guillou-Frottier, L., Burov, E.B., and Milesi, J.-P., Genetic links between ash-flow calderas and associated ore deposits as revealed by large-scale thermo-mechanical modeling, J. Volcanol. Geotherm. Res., 2000, vol. 102, pp. 339–361.CrossRefGoogle Scholar
  12. Hayba, D.O. and Ingebritsen, S.E., Multiphase groundwater flow near Coolinh plutons, J. Geophys. Res., 1997, vol. 102, no. B6, pp. 12,235–12,252. Hutton, D.H.W., The “space problem” in the emplacement of granite, Episodes, 1996, vol. 19, no. 4, pp. 114–119.Google Scholar
  13. Ingebritsen, S.E. and Manning, C.E., Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism, Geofluids, 2010, nos. 1–2, pp. 193–205.Google Scholar
  14. Ingebritsen, S.E. and Appold, S.E., The physical hydrogeology of ore deposits, Econ. Geol., 2012, vol. 107, no. 4, pp. 559–584.CrossRefGoogle Scholar
  15. Ishchukova, I.P., Igoshin, Yu.A., Avdeev, B.V., Gubkin, G.N., Filipchenko, Yu.A., Popova, A.I., Rogova, V.P., Makushin, M.F., Khomentovskii, B.N., and Spirin, E.K., Geologiya Urulyunguevskogo rudnogo raiona i molibdenuranovykh mestorozhdenii Strel’tsovskogo rudnogo polya (Geology of the Urulyunguev Ore District and Molybdenum–Uranium Deposits of the Streltsovka Ore Field), Moscow: Geoinformmark, 1998.Google Scholar
  16. Ishchukova, L.P., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (Uranium Deposits of the Streltsovka Ore Field in Transbaikalia), Naumov, S.S, Eds., Irkutsk: Geolrazvedka, 2007.Google Scholar
  17. Ishchukova, L.P., Ashikhmin, A.A., Konstantinov, A.K., Kostikov, A.T. Modnikov, I.S., Sychev, I.V., Tolkachev, A.E., Chesnokov, D.V., and Shumilin, M.V., Uranovye mestorozhdeniya v vulkano-tektonicheskikh strukturakh (Uranium Deposits in Volcanotectonic Strucures), Mashkovtsev, G.A, Naumov, S.S, Shumilin, M.V, Eds., Moscow: VIMS, 2005.Google Scholar
  18. Ishchukova, L.P., Modnikov, I.S., and Sychev, I.V., Uranium ore-forming systems in the areas of continental volcanism, Geol. Rud. Mestorozhd., 1991, no. 3, pp. 16–25.Google Scholar
  19. Krylova, T.L., Aleshin, F.P., Lomm, T, Velichkin, V.I., and Kyune, M., Evidence for magmatogenic origin of ore-forming fluids at the Mo-U mdeposits of the Streltsovka ore district, Eastertn Transbaikalia, Russia, Mater. XIII Mezhdunar. konf. po termobarogeokhimii i IV simpoziuma (Proc. 13th International Conference on Thermo barogeochemistry and 4th Symposium) APIFIS, 2008, vol. 2, pp. 64–67.Google Scholar
  20. Laverov, N.P. and Chernyshev, I.V., Temporal relation of the uranium deposits with continental volcanism, Geokhronologiya i problemy rudoobrazovaniya (Geochronology and Problems of Ore Formation), Moscow: Nauka, 1977, pp. 5–18.Google Scholar
  21. Laverov, N.P., Velichkin, V.I., Vlasov, B.P., Aleshin, A.P., and Petrov, V.A., Uranovye i molibden-uranovye mestorozhdeniya v oblastyakh razvitiya kontinental’nogo vnutrikorovogo magmatizma: geologiya, geodinamicheskie i fiziko-khimicheskie usloviya formirovaniya (Uranium and Molybdenum–Uranium Deposits in the Regions of Continental Within-Plate Magmatism: Geology, Geodynamic, and Physicochemical Conditions of Formation), Moscow: IFZ RAN, IGEM RAN, 2012.Google Scholar
  22. Lipman, P.W., Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry, Bull. Volcanol., 1997. Vol. 59, no. 3, pp. 1998–205.Google Scholar
  23. Malkovsky, V.I. and Pek, A.A., Conditions for the onset of thermal convection of a homogenous fluid in a vertical fault, Petrology, 1997, no. 5 (no. 4, pp. 381–387.Google Scholar
  24. Malkovsky, V.I. and Pek, A.A., Vliyanie razryvnykh narushenii na protsessy flyuidnogo teplomassoperenosa v zemnoi kore (Influence of Faults on the Fluid Transfer in the Earth crust), M.: IFZ RAN, IGEM RAN, 2014.Google Scholar
  25. Malkovsky, V.I., Pek, A.A., Aleshin, A.P., and Velichkin, V.I., Model of heat and mass transfer by fluid during formation of Mo–U deposits in the Strel’tsovka ore field, Eastern Transbaikal region: forced convection of solutions generated by a deep source, Geol. Ore Deposits, 2010, vol. 52, no. 1, pp. 14–31.Google Scholar
  26. Malkovsky, V.I., Pek, A.A., Aleshin, A.P., and Velichkin, V.I., Estimation of the time of magma chamber solidification beneath the Strel’tsovka Caldera and its effect on the nonstationary temperature distribution in the upper crust, the Eastern Transbaikal region, Russia, Geol. Ore Deposits, 2008, vol. 50, no. 3, pp. 192–198.CrossRefGoogle Scholar
  27. Marsily, G., de. Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Orlando: Academic Press, 1986.Google Scholar
  28. Mashkovtsev, G.A., Konstantinov, A.K., Miguta, A.K., Shumilin, M.V., and Shchetochkin, V.N., Uran rossiiskikh nedr (Uranium of the Russian Interior), Moscow: VIMS, 2010.Google Scholar
  29. McCaffrey, K.J.W. and Petford, N., Are granitic intrusions scale invariant? J. Geol. Soc. London, 1997, vol. 154, pp. 1–4.CrossRefGoogle Scholar
  30. Mitchell, T.M. and Faulkner, D.R., Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones, J. Geophys. Res. Solid Earth, 2008, vol. 113, B11412. doi 10.1029/2008JB005588Google Scholar
  31. Modnikov, T.S. and Sychev, I.V., Conditions of formation of the uranium mineralization in volcanic sagging depressions, Geol. Rud. Mestorozhd., 1984, no. 1, pp. 31–41.Google Scholar
  32. Naumov, V.B., Rhyolitic melts in Eastern Transbaikalia and the north Caucasus: chemical composition, volatiles, and admixture elements (from data of study of melt inclusions in minerals), Russ. Geol. Geophys., 2011, no. 11, pp. 1368–1377.CrossRefGoogle Scholar
  33. Petford, N., Cruden, A.R., McCfffrey, K.J.W., and Vigneresse, J.-L., Granite magma formation, transport and emplacement in the earth’s crust, Nature, 2000, vol. 408, pp. 669–673.CrossRefGoogle Scholar
  34. Petrov, V.A., Andreeva, O.V., Poluektov, V.V., and Kovalenko, D.V., Tectono-magmatic cycles and geodynamic settings of ore-bearing system formation in the southern Cis-Argun Region, Geol. Ore Deposits, 2017, vol. 59, no. 6, pp. 431–452.CrossRefGoogle Scholar
  35. Petrov, V.A., Rebetskii, Yu.A., Poluektov, V.V., and Burmistrov, A.A., Tectonophysics of hydrothermal ore formation: an example of the Antei Mo–U deposit, Transbaikalia, Geol. Ore Deposits, 2015, vol. 57, no. 4, pp. 292–312.CrossRefGoogle Scholar
  36. Richard, A., Rozsypal, C., Mercadier, J., Banks, D.A., Cuney, M., Boiron, M.C., and Cathelineau, M., Giant uranium deposits formed from exceptionally uranium-rich acidic brines, Nature Geosci., 2012, vol. 5, pp. 142–146.CrossRefGoogle Scholar
  37. Roache, P.J., Computational Fluid Dynamics, Albuquerque, N.M.: Hemrosa Publishers, 1976.Google Scholar
  38. Rybalov, B.L. and Omel’yanenko, B.I., Istochniki rudnogo veshchestva endogennykh uranovykh mestorozhdenii (Ore Sources of Endogenous Uranium Deposits), Moscow: Nauka, 1989.Google Scholar
  39. Shatkov, G.A., Krasnokamenst type of uranium deposits as an important reserve of economic uranium mineralization of the Streltsovka ore cluster, Regional. Geol. Metallogen., 2017, vol. 69, pp. 88–95.Google Scholar
  40. Shatkov, G.A., Berezhnaya, N.G., Lepekhina, E.N., Rodionov, N.V., Paderin, I.P., and Sergeev, S.A., U–Pb (SIMS SHRIMP–II) age of volcanic rocks from the Tulukuev Caldera (Streltsov uranium-ore cluster, Eastern Transbaikalia), Dokl. Earth Sci., 2010, vol. 432, pp. 587–592.CrossRefGoogle Scholar
  41. Sheldon, H.A. and Ord, A., Evolution of porosity, permeability and fluid pressure in dilatant faults post-failure: implications for fluid flow and mineralization, Geofluids, 2005, vol. 5, no. 4, pp. 272–288.CrossRefGoogle Scholar
  42. Shmariovich, E.M. and Modnikov, I.S., On problem of uranium source during ore formation, Geol. Rud. Mestorozhd., 1988, no. 5, pp. 5–16.Google Scholar
  43. Shmonov, V.M., Vitovtova, V.M., and Zharikov A.V., Flyuidnaya pronitsaemost' porod zemnoi kory (Fluid Permeability of Crustal Rocks), Moscow: Nauchnyi mir, 2002.Google Scholar
  44. Wohletz, K. and Heiken, G., Volcanology and Geothermal Energy, Berkeley: University of California Press, 1992.Google Scholar
  45. Zienkiewicz, O.C. and Morgan, K., Finite Elements and Approximation, New York: Wiley, 1983.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations