Advertisement

Geology of Ore Deposits

, Volume 60, Issue 5, pp 398–417 | Cite as

Pb Isotopic Composition and Metal Sources of Au and Ag Deposits of the South Verkhoyansk Region (Yakutia, Russia) According to High-Precision MC-ICP-MS Data

  • I. V. Chernyshev
  • A. V. Chugaev
  • N. S. Bortnikov
  • G. N. Gamyanin
  • A. V. Prokopiev
Article
  • 23 Downloads

Abstract

The paper considers the results of high-precision Pb–Pb isotopic analysis of 120 galena samples from 27 Au and Ag deposits of the South Verkhoyansk Synclinorium (SVS) including large Nezhdaninsky deposit (628.8 t Au). The Pb isotopic composition is analyzed on a MC-ICP-MS NEPTUNE mass-spectrometer from solutions with an error of no more than ±0.02% (2σ). Four types of deposits are studied: (i) stratified vein gold–quartz deposits (type 1) hosted in metamorphosed Upper Carboniferous–Lower Permian terrigenous rocks and formed during accretion of the Okhotsk Block to the North Asian Craton synchronously with dislocation metamorphism and related granitic magmatism; (ii) vein gold–quartz (Nezhdaninsky type) deposits also hosted in Lower Permian metasedimentary rocks; (iii) Au–Bi deposits localized at the contact zones of the Late Cretaceous granitic plutons; and (iv) Sn–Ag polymetallic deposits related to granitic and subvolcanic rocks of the Okhotsk Zone of the SVS. The deposits of types 2, 3, and 4 are postaccretionary. The general range of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios is 18.1516–18.5903 (2.4%), 15.5175–15.6155 (0.63%), and 38.3010–39.0481 (2.0%), respectively. In 206Pb/204Pb–207Pb/204Pb and 206Pb/204Pb–208Pb/204Pb diagrams, the data points of Pb isotopic compositions of all deposits occupy restricted, partly overlapping areas along a general elongated trend. The various SVS Au–Ag deposits can be classified according to the Pb isotopic composition in accordance with all three Pb ratios. Deposits of the same type show distinct Pb isotopic compositions that strongly exceed the scale of analytical error (±0.02%). The differences in Pb isotopic composition within specific deposits are low and subordinate and have little effect on variations in the Pb isotopic composition of the SVS deposits. The μ2 values (Stacey–Kramers model), which characterize the 238U/204Pb ratios of ore lead sources of the SVS deposits, widely vary from 9.7 to 9.38. The ω2 values (232Th/204Pb) are 39.82–36.61, whereas the Th/U ratios are 4.04–3.86. The content of all three radiogenic Pb isotopes and μ2 values of feldspars from SVS intrusive rocks are strongly distinct from those of galena of stratified gold–quartz and vein gold–quartz deposits and are identical to Pb of galena from Au–Bi and Sn–Ag polymetallic deposits, indicating a mostly magmatic origin for the Pb of these deposits. Detailed isotopic study of the Nezhdaninsky deposit shows different Pb isotopic composition of two consecutive mineral assemblages (gold–sulfide and Ag polymetallic): ~0.30, ~0.07, and ~0.22% for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios, respectively. These differences are interpreted as a result of involvement of at least two metal sources during the evolution of an ore-forming system: (i) host Lower Permian terrigenous rocks and (ii) a magmatic source similar in Pb isotopic composition to that of Sn–Ag polymetallic deposits. The Pb isotopic composition and μ2 and Th/U values show that lead of stratified gold–quartz deposits combines isotopic tracers of lower and upper crustal sources (Upper Carboniferous–Lower Permian terrigenous rocks), lead of which was mobilized by ore-bearing fluids. The high 208Pb/206Pb ratios and Th/U evolutionary parameter are common to all Pb isotopic composition of all studied Au–Ag deposits and SVS Cretaceous intrusive rocks and indicate that Pb sources were depleted in U relative to Th. Taking into account the structure of the region and conceptions on its evolution, we can suggest that the magma source was related to lower crustal subducted rocks of the Archean (~2.6 Ga) North Asian Craton and the Okhotsk terrane.

Keywords

Pb isotopes high-precision MC-ICP-MS method metal sources Au and Ag deposits South Verkhoyansk Synclinorium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andriyanov, N.G., Relationships between metamorphism and gold mineralization in the South Verkhoyansk synclinorium, Dokl. Akad. Nauk SSSR, 1973, vol. 211, no. 2, pp. 434–436.Google Scholar
  2. Anikina, E.Yu., Bortnikov, N.S., Klubnikin, G.K., Gamyanin, G.N., and Prokof’ev, V.Yu., The Mangazeya Ag–Pb–Zn vein deposit hosted in sedimentary rocks, Sakha-Yakutia, Russia: mineral assemblages, fluid inclusions, stable isotopes (C, O, S), and origin, Geol. Ore Deposits, 2016, vol. 58, no. 3, pp. 182–212.CrossRefGoogle Scholar
  3. Baker, T., Pollard, P.J., Mustard, P., Mark, G., and Graham, J.L., A comparison of granite-related tin, tungsten, and gold-bismuth deposits: implication for explorations, SEG Newsletter, 2005, no. 61, 5–17.Google Scholar
  4. Beaudoin, G. and Sangster, D.F., A descriptive model for silver–lead–zinc veins in clastic metasedimentary terranes, Econ. Geol., 1992, vol. 87, no. 4, pp. 1005–1021.CrossRefGoogle Scholar
  5. Bierlein, F.P. and McNaughton, N.J., Pb isotope fingerprinting of mesothermal gold deposits from Central Victoria, Australia: implications for ore genesis, Mineral. Deposita, 1998, vol. 33, no. 6, pp. 633–638.CrossRefGoogle Scholar
  6. Bortnikov, N.S., Gamyanin, G.N., Alpatov, V.A., Naumov, V. B., Nosik, L.P., and Mironova, O.F., Mineralogy, geochemistry and origin of the Nezhdaninsk gold deposit (Sakha-Yakutia, Russia), Geol. Ore Deposits, 1998, vol. 40, no. 2, pp. 121–138.Google Scholar
  7. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., Prokof’ev, V.Yu., Alpatov, V.A., and Bakharev, A.G., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 87–128.CrossRefGoogle Scholar
  8. Chernyshev, I.V., Chugaev, A.V., and Shatagin, K.N., High-precision Pb isotope analysis by multicollector-ICPmass-spectrometry using 205Tl/203Tl normalization: optimization and calibration of the method for the studies of Pb isotope variations, Geochem. Int., 2007, vol. 45, no. 11, pp. 1065–1077.CrossRefGoogle Scholar
  9. Chernyshev, I.V., Vikent’ev, I.V., Chugaev, A.V., Shatagin, K.N., and Moloshag, V.P., Sources of material for massive sulfide deposits in the Urals: evidence from the high-precision MC-ICP-MS isotope analysis of Pb in galena, Dokl. Earth Sci., 2008, vol. 418, pp. 178–183.CrossRefGoogle Scholar
  10. Chernyshev, I.V., Chugaev, A.V., Safonov, Yu.G., Saroyan, M.R., Yudovskaya, M.A., and Eremina, A.V., Lead isotopic composition from data of high-precession MC-ICP-MS and sources of matter in the large-scale Sukhoi Log noble metal deposit, Russia, Geol. Ore Deposits, 2009, vol. 51, no. 6, pp. 496–504.CrossRefGoogle Scholar
  11. Chernyshev, I. V., Bortnikov, N. S., Chugaev, A.V., Gamyanin, G.N., and Bakharev, A.G., Metal sources of the large Nezhdaninsky orogenic gold deposit, Yakutia, Russia: results of high-precision MC-ICP-MS analysis of lead isotopic composition supplemented by data on strontium isotopes, Geol. Ore Deposits, 2011a, vol. 53, no. 5, pp. 353–373.CrossRefGoogle Scholar
  12. Chernyshev, I.V., Bortnikov, N.S., Chugaev, A.V. Golubev, V.N., Fouquet, Y., Amplieva, E.E., and Stavrova, O.O., Variation scale and heterogeneity of the lead isotope composition in sulfides from hydrothermal fields of the Mid-Atlantic Ridge: evidence from high-precision MC–ICP–MS isotopic data, Dokl. Earth Sci. 2011b, vol. 437, pp. 507–512.CrossRefGoogle Scholar
  13. Chernyshev, I.V., Bakharev, A.G., Bortnikov, N.S., Goltsman, Yu.V., Kotov, A.B., Gamyanin, G.N., Chugaev, A.V., Salnikova, E.B., and Bairova, E.D., Geochronology of igneous rocks at and near to the Nezhdaninka gold deposit, Yakutia, Russia: U–Pb, Rb–Sr, and Sm–Nd isotopic data, Geol. Ore Deposits, 2012, vol. 54, no. 6, pp. 411–433.CrossRefGoogle Scholar
  14. Chugaev, A.V. and Chernyshev, I.V., Pb–Pb isotopic systematics of orogenic gold deposits of the Baikal–Patom fold belt (Northern Transbaikalia, Russia) and estimation of the role of Neoproterozoic crust in their formation, Geochem. Int., 2017, vol. 55, no. 11, pp. 1010–1021.CrossRefGoogle Scholar
  15. Chugaev, A.V., Chernyshev, I.V., Gamyanin, G.N., Bortnikov, N.S., and Baranova, A.N., Rb–Sr isotopic systematic of hydrothermal minerals, age, and matter sources of the Nezhdaninskoe Gold Deposit (Yakutia), Dokl. Earth Sci., 2010a, vol. 434, no. 4, pp. 1337–1341.CrossRefGoogle Scholar
  16. Chugaev, A.V., Chernyshev, I.V., Safonov, Yu.G., Saroyan, M.R., Lead isotopic characteristics of sulfides from large gold deposits of the Baikal–Patom highland (Russia): evidence from high-precision MC–ICP–MS isotopic analysis of lead, Dokl. Earth Sci., 2010b, vol. 434, pp. 1366–1370.CrossRefGoogle Scholar
  17. Chugaev, A.V., Chernyshev, I.V., Bortnikov, N.S., Kovalenker, V.A., Kisileva, G.D., and Prokof’ev, V.Yu., Lead isotope ore provinces of eastern Transbaikalia and their relationships to regional structures: results of high-precision MC-ICP-MS study of Pb isotopes, Geol. Ore Deposits, 2013, vol. 55, no. 4, pp. 245–255.CrossRefGoogle Scholar
  18. Chugaev, A.V., Plotinskaya, O.Yu., Chernyshev, I.V., and Kotov, A.A., Lead isotope heterogeneity in sulfides from different assemblages at the Verninskoe Gold Deposit (Baikal–Patom Highland, Russia), Dokl. Earth Sci., 2014, vol. 457, pp. 887–892.CrossRefGoogle Scholar
  19. Chugaev, A.V., Plotinskaya, O.Yu., Chernyshev, I.V., Lebedev, V.A., Belogub, E.V., Goltsman, Yu.V., Larionova, Yu.O., and Oleinikova, T.I., Age and sources of matter for the Kedrovskoe gold deposit, Northern Transbaikal Region, Republic of Buryatia: geochronological and isotopic geochemical constraints, Geol. Ore Deposits, 2017, vol. 59, no. 4, pp. 281–295.CrossRefGoogle Scholar
  20. Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., The ICS international chronostratigraphic chart, Episodes, 2013, vol. 36, no. 3, pp. 199–204.Google Scholar
  21. Collerson, K.D., Kamber, B.S., and Schoenberg, R., Applications of accurate, high precision Pb isotope ratio measurement by multi-collector ICP-MS, Chem. Geol., 2002, vol. 188, nos. 1–2, pp. 65–83.CrossRefGoogle Scholar
  22. Frei, R., Dahl, P.S., Frandsson, M.M., Jensen, L.A., Hansen, T.R., Terry, M.P., and Frei, K.M., Lead-isotope and trace-element geochemistry of Paleoproterozoic metasedimentary rocks in the lead and Rochford basins (Black Hills, South Dakota, USA): implications for genetic models, mineralization ages, and sources of leads in the homestake gold deposit, Precambrian Res., 2009, vol. 172, nos. 1–2, pp. 1–24.CrossRefGoogle Scholar
  23. Gamyanin, G.N., Mineralogo-geneticheskie aspekty zolotogo orudeneniya Verkhoyano-Kolymskikh mezozoid (Mineralogical–Genetic Aspects of Gold Mineralization of the Verkhoyanski–Kolyma Mesozoides), Moscow: GEOS, 2001.Google Scholar
  24. Gamyanin, G.N., Silichev, M.K., Goryachev, N.A., and Belozertseva, N.A., Poliformatsionnoe zolotorudnoe mestorozhdenie (Polyformation Gold Deposit), 1985, vol. 27, no. 5, pp. 86–89.Google Scholar
  25. Gamyanin, G.N., Bortnikov, N.S., and Alpatov, V.V., Nezhdaninskoe zolotorudnoe mestorozhdenie - unikal’noe mestorozhdenie Severo-Vostoka Rossii (Nezhdaninskoe Gold Deposit—a unique deposit of Northest Russia), Moscow. GEOS, 2000. 226 s.Google Scholar
  26. Gamyanin, G.N., Anikina, E.Yu., Bortnikov, N.S., and Alpatov, V.V., The Prognoz Silver–Polymetallic deposit, Sakha (Yakutia): chemistry and zoning of ore veins, Geol. Ore Deposits, 2003, vol. 45, no. 6, pp. 466–480.Google Scholar
  27. Goldfarb, R.J. and Groves, D.I., Orogenic gold: common or evolving fluid and metal sources through time, Lithos, 2015, vol. 233, pp. 2–26.CrossRefGoogle Scholar
  28. Goldfarb, R., Baker, T., Dube, B., Groves, D.I., Hart, C.J.R., and Gosselin, P., Distribution, character and genesis of gold deposits in metamorphic terranes, Econ. Geol. 2005, vol. 100, p. 407–450.Google Scholar
  29. Goldfarb, R.J., Taylor, R.D., Collins, G.S., Goryachev, N.A., and Orlandini, O.F., Phanerozoic continental growth and gold metallogeny of Asia, Gondwana Res., 2014, vol. 25, no. 1, pp. 48–102.CrossRefGoogle Scholar
  30. Goryachev, N.A., Proiskhozhdenie zoloto-kvartsevykh zhil’nykh poyasov Severnoi Patsifiki (Origin of the gold–quartz vein belts of Northern Pacific), Magadan: SVKNII DVO RAN, 2003.Google Scholar
  31. Grinberg, G.A., Bakharev, A.G., Gamyanin, G.N., Granitoidy Yuzhnogo Verkhoyan’ya (Granitoids of the Southern Verkhoyansk Area), Moscow: Nauka, 1970.Google Scholar
  32. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F., Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 1998, vol. 13, nos 1–5, pp. 7–27.CrossRefGoogle Scholar
  33. Gulson, B.L., Lead Iotopes in Mineral Exploration, Amsterdam: Elsevier, 1986.Google Scholar
  34. Gusev G.S. Skladchatye struktury i razlomy Verkhoyano-Kolymskoi sistemy mezozoid (Fold Structures and Faults of the Verkhoyansk–Kolyma Mesozoide System), Moscow: Nauka, 1979.Google Scholar
  35. Ho, S.E., McQueen, K.G., McNaughton, N.J., and Groves, D.I., Lead isotope systematics and pyrite trace element geochemistry of two granitoid-associated mesothermal gold deposits in the southeastern Lachlan fold belt, Econ. Geol., 1995, vol. 90, no. 6, pp. 1818–1830.CrossRefGoogle Scholar
  36. Indolev, L.N., Magmatism and Relation with Mineralization in the northern Southern Verkhoyansk synclinorium, Geologiya olovorudnykh i polimetallicheskikh mestorozhdenii Yakutii (Geology of Wall-Rock and Base-Metal Deposits of Yakutia), Moscow: Nauka, 1965, pp. 15–85.Google Scholar
  37. Kamenov, G.D., Macfarlane, A.W., and Riciputi, L., Sources of lead in the San Cristobal, Pulacayo, and Potosi mining districts, Bolivia, and a reevaluation of regional ore lead isotope provinces, Econ. Geol., 2002, vol. 97, no. 3, pp. 573–592.Google Scholar
  38. Kamenov, G.D., Perfita, T.M.R., Jonassonb, I.R., and Mueller, P.A., High-precision Pb isotope measurements reveal magma recharge as a mechanism for ore deposit formation: examples from Lihir Island and conical seamount, Papua New Guinea, Chem. Geol., 2005, vol. 219, no. 1, pp. 131–148.CrossRefGoogle Scholar
  39. Khudoley, A.K. and Gur’ev, G.A., The Middle Paleozoic–Mesozoic passive margin: evidence from the Southern Verkhoyansk Region, Dokl. Earth Sci., 1998, vol. 362, pp. 1058–161.Google Scholar
  40. Khudoley, A.K., Prokopiev, A.V., Chamberlain, K.R., et al., Early Paleozoic mafic magmatic events on the eastern margin of the Siberian Craton, Lithos, 2013, vol. 174, pp. 44–56.CrossRefGoogle Scholar
  41. Kramers, J.D. and Tolstikhin, I.N., Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust, Chem. Geol., 1997, vol. 139, nos. 1–4, pp. 75–110.CrossRefGoogle Scholar
  42. Layer, P.W., Newberry, R., Fujita, K., et al., Tectonic setting and plutonic belts of Yakutia, northeast Russia, based on 40Ar/39Ar geochronology and trace element geochemistry, Geology, 2001, vol. 29, no. 2, pp. 167–170.CrossRefGoogle Scholar
  43. Nekrasov, I.Ya., Genetic types of tin-bearing deposits of the Poluosny and Selennyakh ranges, Geol. Rud. Mestorozhd., 1959, no. 1, pp. 12–23.Google Scholar
  44. Nenashev, N.I. and Zaitsev, A.I., Geokhronologiya i problema genezisa granitoidov Vostochnoi Yakutii (Geolchronology and Genetic Problems of East Yakutia), Novosibirsk: Nauka, 1980.Google Scholar
  45. Nokleberg, W.J., Bundtzen, T.K., Eremin, R.A., Ratkin, V.V., Dawson, K.M., Shpikerman, V.I., Goryachev, N.A., Byalobzhesky, S.G., Frolov, Yu.F., Khanchuk, A.I., Koch, R.D., Monger, J.W.H., Pozdeev, A.I., Rozenblum, I.S., Rodionov, S.M., Parfenov, L.M., Scotese, Ch.R., and Sidorov, A.A., Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian cordillera, USGS Prof. Pap., 2005, no. 1697.Google Scholar
  46. Paiement, J.-P., Beaudoin, G., Paradis, S., and Ullrich, T., Geochemistry and metallogeny of Ag–Pb–Zn veins in the Purcell Basin, British Columbia, Econ. Geol., 2012, vol. 107, no. 6, pp. 1303–1320.CrossRefGoogle Scholar
  47. Parfenov, L.M., Kontinental’nye okrainy i ostrovnye dugi mezozoid Severo-Vostoka Azii (Continental Margins and Island Arcs of Mesozoides of Northest Asia), Novosibirsk: Nauka, 1984.Google Scholar
  48. Parfenov, L.M. and Prokop’ev, A.V., Frontal thrust structures of the Verkhoyansk Fold Belt, East Siberia, Geol. Geofiz., 1993, vol. 34, no. 7, pp. 23–35.Google Scholar
  49. Parfenov, L.M., Prokopiev, A.V., and Gaiduk, V.V., Cretaceous frontal thrusts of the Verkhoyansk fold belt, Eastern Siberia, Tectonics, 1995, vol. 14, no. 2, pp. 342–358.CrossRefGoogle Scholar
  50. Prokop’ev, A.V., Kinematika mezozoiskoi skladchatosti zapadnoi chasti Yuzhnogo Verkhoyan’ya (Kinematics of Mesozoic Folding of the Western Part of the Southern Verkhoyansk Region), Yakutsk: YaNTs SO AN SSSR, 1989.Google Scholar
  51. Prokop’ev, A.V., Verkhoyansk–Cherskii collision orogen, Tikhookean. Geol., 1998, vol. 17, no. 5, pp. 310.Google Scholar
  52. Prokop’ev, A.V., Bakharev, A.G., Zaitsev, A.I., Tret’yakov, F.F., Gamyanin, G.N., and Alpatov V.V. Tectonics of the interference zones of synchronous geodynamic events: evidence from the interaction of the Northasian margin, Okhotsk terrane, and Kolyma–Omolon microcontinent, Oblasti aktivnogo tektogeneza v sovremennoi i drevnei istorii Zemli (Areas of Active Tectonogenesis in the Modern and Ancient History of the Earth), Moscow: GEOS, 2006, vol. 2, pp. 119–123.Google Scholar
  53. Prokop’ev, A.V., Kropachev, A.P., Vas’kin, A.F., and Khudolei, A.K., Tectonics, in Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Seriya Verkhoyano-Kolymskaya. List P-54. Oimyakon. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1: 1000000 (Third Generation). Verkhoytansk–Kolyma Series. Sheet R-54–Oimyakov. Explanatory Note), Ed. by Kazakova, G.G., Vas’kin, A.F., Kropachev, A.P., Shcherbakov, O.I., et al., St. Petersburg: Kartograf. fabrika VSEGEI, 2013, pp. 131–158.Google Scholar
  54. Prokopiev, A.V., Toro, J., Hourigan, J.K., Bakharev, A.G., and Miller, E.L., Middle Paleozoic–Mesozoic boundary of the north Asian Craton and the Okhotsk Terrane: new geochemical and geochronological data and their geodynamic interpretation, Stephan Mueller Spec. Publ. Ser., 2009, vol. 4, pp. 71–84.CrossRefGoogle Scholar
  55. Rehkamper M. and Halliday A.M. Accuracy and long-term reproducibility of lead isotopic measurements by MCICPMS using an external method for correction of mass discrimination, Int. J. Mass Spec. Ion Proc. 1998. Vol. 58. nos. 1–3. pp. 123–133.CrossRefGoogle Scholar
  56. Silichev, M.K. and Andriyanov, N.G., Structural-geochemical principles of prediction of gold deposits of the Southern Verkhoyansk synclinorium, Voprosy rudonosnosti Yakutii (Problems of Ore Potential of Yakutia), Yakutsk: Izd. YaF SO AN SSSR, 1974, pp. 54–66.Google Scholar
  57. Silichev, M.K. and Belozertseva, N.V., Time and conditions of formation of conformable gold–quartz veins of the Southern Verkhoyansk region, Tikhookean. Geol., 1985, no. 4, pp. 52–57.Google Scholar
  58. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.CrossRefGoogle Scholar
  59. Standish, C.D., Dhuime, B., Chapman, R.J., Hawkesworth, C.J., and Pike, A.W.G., The genesis of gold mineralisation hosted by orogenic belts: a lead isotope investigation of Irish gold deposits, Chem. Geol., 2014, vol. 378, pp. 40–51.CrossRefGoogle Scholar
  60. Sugaki, A. and Kitakaze, A., Tin-bearing minerals from Bolivian polymetallic deposits and their mineralization stages, Mining Geology, 1988, vol. 38, no. 5, pp. 419–435.Google Scholar
  61. Tektonika, geodinamika i metallogeniya territorii Respubliki Sakha (Yakutiya) (Tectonics, Geodynamics, and Metallogeny of the Sakha Republic (Yakutia)), Parfenov, L.M. and Kuz’min, M.I., Eds., Moscow: Maik “Nauka/Interperiodika”, 2001.Google Scholar
  62. Thompson, J.F.H. and Newberry, R.J., Gold deposits related to reduced granitic intrusions, Rev. Econ. Geol., 2000, vol. 13, pp. 377–400.Google Scholar
  63. Wedepohl, K.H., The composition of the continental crust, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 7, pp. 1217–1232.CrossRefGoogle Scholar
  64. Zagruzina I.A. Geokhronologiya mezozoiskikh granitoidov Severo-Vostoka SSSR (Geochronology of Mesozoic Granitoids of Northeast USSR), Moscow: Nauka, 1977.Google Scholar
  65. Zartman, R.E. and Doe, B.R., Plumbotectonics–-the model, Tectonophysics, 1981, vol. 75, pp. 135–162.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Chernyshev
    • 1
  • A. V. Chugaev
    • 1
  • N. S. Bortnikov
    • 1
  • G. N. Gamyanin
    • 1
  • A. V. Prokopiev
    • 2
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology of Diamond and Precious Metals, Siberian BranchRussian Academy of SciencesYakutskRussia

Personalised recommendations