Geology of Ore Deposits

, Volume 60, Issue 5, pp 418–448 | Cite as

Loypishnyun Low-Sulfide Pt–Pd Deposit of the Monchetundra Basic Massif, Kola Peninsula, Russia

  • V. V. Chashchin
  • S. V. Petrov
  • S. V. Drogobuzhskaya


The geology of the basal-structural Loypishnyun low-sulfide Pt–Pd deposit is characterized, including its mineral composition and the peculiarities of its PGE and chalcophile-element distribution in ore. The deposit is situated in the northeastern part of the Monchetundra basic massif and is localized in its lower norite–orthopyroxenite zone, intensely injected with late gabbroic rocks. Two ore zones are distinguished within the deposit. Ore zone 1 has been traced by drilling for about 1.5 km at a thickness from 10–15 to 120 m and incorporates from two to nine separate lenticular–sheetlike orebodies 0.5–25 m in thickness. Ore zone 2 has been traced for 550 m and is represented by one orebody 5–35 m thick. The internal structure of the orebodies is characterized by alternation of low-grade (Pt + Pd = 0.5–0.9 gpt), ordinary (Pt + Pd = 1.0–1.9 gpt), and high-grade (Pt + Pd > 2 gpt) interlayers of various thickness. The ores are spatially and genetically related to sulfide mineralization (pentlandite–chalcopyrite–pyrrhotite) in an amount of 1–5 vol %. The PGE distribution in ores normalized to primitive mantle is characterized by fractionation of easily fusible platinoids with a positive Pd anomaly. The spectra of chalcophile elements normalized to primitive mantle are notable for elevated Te, Bi, As, and Se contents with respect to Sn, Hg, and Pb, which reflects the significant contribution of Te, Bi, and As in the formation of platinum group minerals (PGM), whereas Se, which is devoid of proper mineral phases, most likely is an admixture in the composition of sulfides. The S/Se value in ore of the Loypishnyun deposit varies from 31 to 814. The platinum group elements (PGE) in ore are represented by 45 noble metal minerals. Ore zone 1 is characterized by lateral mineral zoning, which is expressed as replacement of a bismuthotelluride–sulfide PGM assemblage by an assemblage of copper–PGE compounds and alloys. In ore zone 2, a mineral assemblage of tellurides, copper–PGE compounds and alloys predominates, with native gold, silver, and palladium, as well as sulfides and bismuthotellurides, playing a subordinate role. The formation of PGM ore proceeded under variable sulfur fugacity conditions, beginning with the late magmatic stage at temperatures of 900–700°C and ending with hydrothermal transformation at a temperature of <500°C.


Monchetundra basic massif Loypishnyun low-sulfide Pt-Pd deposit ore zones mineral composition of ores geochemistry of PGE and chalcophile elements mineralogy of noble metals PGM assemblage evolution of PGM ore formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alapieti, T.T. and Lahtinen, J.J., Platinum-group element mineralization in layered intrusions of northern Finland and the Kola Peninsula, Russia, The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements, Cabri, L.J. Ed., Canadian Institute of Mining, Metallurgy and Petroleum, 2002, vol. 54, pp. 507–546.Google Scholar
  2. Balabonin, N.L., Korchagin, A.U., Subbotin, V.V., et al., PGE minerals and new data on major mineral ores of the Fedorova Pana massif, Vestn. Murmansk. Gos. Tekhn. Univ., 2000, vol. 3, no. 2, pp. 179–204.Google Scholar
  3. Ballhaus, C.G. and Stumpfl, E.F., Sulfide and platinum mineralization in the Merensky Reef: evidence from hydrous silicates and fluid inclusions, Contrib. Mineral. Petrol., 1986, vol. 94, no. 2, pp. 193–204.CrossRefGoogle Scholar
  4. Barkov, A.Y., Menshikov, Y.P., Begizov, V.D., et al., Oulankaite, a new platinum-group mineral from the Lukkulaisvaara layered intrusion, Northern Karelia, Russia, Eur. J. Mineral., 1996, no. 8, pp. 311–316.CrossRefGoogle Scholar
  5. Bayanova, T., Mitrofanov, F., Serov, P., et al., Layered PGE Paleoproterozoic (LIP) intrusions in the N-E part of the Fennoscandian Shield–isotope Nd-Sr and 3He/4He data, summarizing U-Pb ages (on baddeleyite and zircon), Sm-Nd data (on rock-forming and sulphide minerals), duration and mineralization, Geochronology–Methods and Case Studies, Mörner, N.A., Ed., INTECH, 2014, pp. 143–193. Google Scholar
  6. Bayanova T.B., Nerovich L.I., Mitrofanov F.P., et al., The Monchetundra basic massif of the Kola Region: new geological and isotope geochronological data, Dokl. Earth Sci., 2010, vol. 431, pp. 288–293.CrossRefGoogle Scholar
  7. Blagorodnye metally. Spravochnik (Noble Metals. A Reference Book), Savitskii, E.M, Eds., Moscow: Metallurgiya, 1984.Google Scholar
  8. Boudreau, A.E. and McCallum, I.S., Concentration of platinum-group elements by magmatic fluids in layered intrusions, Econ. Geol., 1992, vol. 87, pp. 1830–1848.CrossRefGoogle Scholar
  9. Boudreau, A.E., Modeling the Merensky Reef, Bushveld Complex, Republic of South Africa, Contrib. Mineral. Petrol., 2008, vol. 156, pp. 431–437.CrossRefGoogle Scholar
  10. Chashchin, V.V., Pyroxenes of the Monchetundra peridotite–pyroxenite–leucogabbro and Volch’etundra gabbroanorthosite massifs, Zap. Mineral. O-va, 1999, no. 3, pp. 101–111.Google Scholar
  11. Chashchin, V.V., Bayanova, T.B., Mitrofanov, F.P., et al., Low-sulfide PGE ores in Paleoproterozoic Monchegorsk pluton and massifs of its southern framing, Kola Peninsula, Russia: geological characteristic and isotopic geochronological evidence of polychronous ore–magmatic systems, Geol. Ore Deposits, 2016, vol. 58, no. 1, pp. 37–57.CrossRefGoogle Scholar
  12. Chashchin, V.V., Kul’chitskaya, A.A., Elizarova, I.R., Fluid regime of the formation of low-sulfide PGM Loipishnyun deposits, Monchetundra basite massif (Kola Peninsula, Russia), Litosfera, 2017, vol. 17, no. 6, pp. 91–109.CrossRefGoogle Scholar
  13. Chashchin V.V., Petrov S.V. Low-Sulfide PGE Ore in the Volchetundra Gabbro–Anorthosite Pluton, Kola Peninsula, Russia, Geol. Ore Deposits, 2013, vol. 55, no. 5, pp. 357–382.CrossRefGoogle Scholar
  14. Dare, S.A.S., Barnes, S.-J., and Prichard, H.M., The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada and the origin of palladium in pentlandite, Miner. Deposita, 2010, vol. 45, pp. 765–793.CrossRefGoogle Scholar
  15. Dodin, D.A., Chernyshov, N.M., Yatskevich, B.A., Platinometal’nye mestorozhdeniya Rossii (PGM Deposits of Russia), St. Petersburg: Nauka, 2000.Google Scholar
  16. Duran, C.J., Barnes, S.-J., and Corkery, J.T., Geology, petrography, geochemistry ànd genesis of sulfide-rich pods in the Lac des Iles palladium deposits, Eastern Ontario, Canada, Miner. Deposita, 2016, vol. 51, pp. 509–532.CrossRefGoogle Scholar
  17. Genkin, A.D., Evstigneeva T.L., Vyal’sov, L.N., et al., Kharaelakhite (Pt,Cu,Pb,Fe,Ni)9S8–a new sulfide of platinum, copper, and lead, Mineral. Zh., 1985, no. 7, pp. 78–83.Google Scholar
  18. Geology, geochemistry, mineralogy and mineral benification of platinum-group elements, Cabri, L.J., Ed., Canad. Inst. Min. Metal. Petrol. 2002. Cim Special Volume 54.Google Scholar
  19. Glotov, A.I. and Orsoev, D.A., Distribution of the noble metals in the platiniferous Cu–Ni sulfide ores of the Monchegorsk Complex, Kola Peninsula, Dokl. Earth Sci., 1996, vol. 347, pp. 492–494.Google Scholar
  20. Godel, B. and Barnes, S.-J., Platinum-group elements in sulfide minerals and the whole rocks of the J–M reef (Still-water Complex): implication for the formation of the reef, Chem. Geol., 2008, vol. 248, pp. 272–294.CrossRefGoogle Scholar
  21. Green, T. and Peck, D., Platinum group elements exploration: economic considerations and geological criteria, Exploration for platinum-group elements deposits, Mungall, J.E., Ed., Mineral. Ass. Canada. Short Course Series, 2005, vol. 35, pp. 247–274.Google Scholar
  22. Grokhovskaya, T.L., Bakaev, G.F., Shelepina, E.P., et al., PGE mineralization in the Vuruchuaivench gabbronorite massif, Monchegorsk Pluton (Kola Peninsula, Russia), Geol. Ore Deposits, 2000, vol. 42, no. 2, pp. 133–146.Google Scholar
  23. Grokhovskaya, T.L., Bakaev, G.F., Sholokhnev, V.V., et al., The PGE ore mineralization in the Monchegorsk magmatic layered complex (Kola Peninsula, Russia), Geol. Ore Deposits, 2003, vol. 45, no. 4, pp. 287–308.Google Scholar
  24. Grokhovskaya, T.L., Ivanchenko, V.N., Karimova, O.V., et al., Geology, mineralogy, and genesis of PGE mineralization in the South Sopcha Massif, Monchegorsk Complex, Russia, Geol. Ore Deposits, 2012, vol. 54, no. 5, pp. 347–369.CrossRefGoogle Scholar
  25. Grokhovskaya, T.L., Lapina, M.I., and Mokhov, A.V., Assemblages and genesis of platinum-group minerals in low-sulfide ores of the Monchetundra Deposit, Kola Peninsula, Russia, Geol. Ore Deposits, 2009, vol. 51, no. 6, pp. 467–485.CrossRefGoogle Scholar
  26. Grokhovskaya, T.L. and Laputina, I.P. Platinum mineralization of some layered intrusions of the Kola Peninsula, Nikelenosnost’ bazit-giperbazitovykh kompleksov Karelo-Kol’skogo regiona (Nickel Potential of the Basite–Hyperbasite Complexes of the Karelia–Kola Region), Apatity: KNTs AN SSSR, 1988. S. 69–73.Google Scholar
  27. Hattori, K.H., Arai, S., and Clarke, D.B., Selenium, tellurium, arsenic and antimony contents of primary mantle sulfides, Can. Mineral., 2002, vol. 40, pp. 637–650.CrossRefGoogle Scholar
  28. Helmy, H.M., Ballhaus, C., Berndt, J., et al., Formation of Pt, Pd and Ni tellurides: experiments in sulfide-telluride systems, Contrib. Mineral. Petrol., 2007, vol. 153, pp. 577–591.CrossRefGoogle Scholar
  29. Holwell, D. and McDonald, I., Petrology, geochemistry and the mechanisms determining the distribution of platinum- group element and base metal sulfide mineralization in the Platreef at Overysel, Northern Bushveld Complex, South Africa, Miner. Deposita, 2006, vol. 41, pp. 575–598.CrossRefGoogle Scholar
  30. Hutchinson, D. and McDonald, I., Laser ablation ICP-MS study of platinum-group elements in sulfides from the Platreef at Turfspruit, northern limb of the Bushveld Complex, South Africa, Miner. Deposita, 2008, vol. 43, no. 6, pp. 695–711.CrossRefGoogle Scholar
  31. Iljina, M., The Portimo layered igneous complex - with emphasis on diverse sulphide and platinum-group element deposits, Department of Geology, University of Oulu, Finland, Ph.D. Thesis, 1994.Google Scholar
  32. James, R.S., Jobin-Bevans, S., Easton, R.M., et al., Platinum- group element mineralization in Paleoproterozoic basic intrusions in central and northeastern Ontario, Canada, The Geology, Geochemistry, Mineralogy and Mineral Benefication of Platinum-Group Elements, Cabri, L.J., Ed., Canadian Institute of Mining and Metallurgy. Ottawa, Ontario, 2002, vol. 54, pp. 339–365.Google Scholar
  33. Kim, W.-S. and Chao, G.Y., Phase relations in the system Pt–Sb–Te, Can. Mineral., 1990, vol. 28, pp. 675–685.Google Scholar
  34. Kim, W.-S. and Chao, G.Y., Phase relations in the system Pd–Sb–Te, Can. Mineral., 1991, vol. 29, pp. 401–409.Google Scholar
  35. Knauf, V.V. and Guseva, N.S., New ore-formation type of PGM ores in the two member sections of the massifs in the sothern framing of the Monchegorsk layered pluton, Platina Rossii (Platinum of Russia), Dodin, D.A., Ed., Krasnoyarsk, 2011, vol. 7, pp. 313–329.Google Scholar
  36. Maier, W.D. and Barnes, S.-J., Unusually high concentrations of magnetite at Caraiba and other Cu-sulfide deposits in the Curaca valley, Bahia, Brasil, Can. Mineral., 1996, vol. 34, pp. 717–731.Google Scholar
  37. McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  38. Mitrofanov, F.P., Balaganskii, V.V., Balashov, Yu.A., et al., U-Pb age of gabbro–anorthosites of the Kola Peninsula, Dokl. Akad. Nauk, 1993, vol. 331, pp. 95–98.Google Scholar
  39. Mungall, J.E. and Su, S., Interfacial tension between magmatic sulfide and silicate liquids: constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks, Earth Planet. Sci. Lett, 2005, vol. 234, nos. 1–2, pp. 135–149.CrossRefGoogle Scholar
  40. Naldrett, A.J., Magmaticheskie sul’fidnye mestorozhdeniya medno-nikelevykh i platinometal’nykh rud (Magmatic Sulfide Deposits of Copper–Nickel and PGM Ores), St. Petersburg: SPbGU, 2003.Google Scholar
  41. Naldrett, A.J., Secular variation of magmatic sulfide deposits and their source magmas, Econ. Geol., 2010, vol. 105, pp. 669–688.CrossRefGoogle Scholar
  42. Nerovich, L.I., Bayanova, T.B., Savchenko, E.A., et al., New data on the geology, petrography, isotope geochemistry, and PGE mineralization of the Monche Tundra massif, Vestn. Murmansk. Gos. Tekhn. Univ., 2009, vol. 12, no. 2, pp. 461–477.Google Scholar
  43. Pentek, A., Molnar, F., Tuba, G., et al., The significance of partial melting processes in hydrothermal “low-sulfide” Cu–Ni–PGE mineralization within the footwall of the Sudbury igneous complex, Ontario, Canada, Econ. Geol., 2013, vol. 108, pp. 59–78.CrossRefGoogle Scholar
  44. Peregoedova, A., Barnes, S.-J., and Baker, D.R., The formation of Pt–Ir alloys and Cu–Pd rich sulfide melts by partial desulfurization of Fe–Ni–Cu sulfides: results of experiments and implication for natural systems, Chem. Geol., 2004, vol. 208, pp. 247–264.CrossRefGoogle Scholar
  45. Petrov, S.V., Metodological and terminological aspects of study of gold speciation in ores, Obogashchenie rud, 2005, no. 2, pp. 27–30.Google Scholar
  46. Pripachkin, P.V., Rundkvist, T.V., Miroshnikova, Ya.A., et al., Geological structure and ore mineralization of the South Sopchinsky and Gabbro-10 massifs and the Moroshkovoe Lake target, monchegorsk area, Kola Peninsula, Russia, Miner. Deposita, 2015. doi 10.1007/s00126-015-0605-0Google Scholar
  47. Queffurus, M. and Barnes, S.-J., A review of sulfur to selenium ratios in magmatic nickel-copper and platinum-group element deposits, Ore Geol. Rev., 2015, vol. 69, pp. 301–324.CrossRefGoogle Scholar
  48. Rassloennye intruzii Monchegorskogo rudnogo raiona: petrologiya, orudenenie, izotopiya, glubinnoe stroenie (Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotopy, Deep Structure), Mitrofanov, F.P. and Smol’kin, V.F., Eds., Apatity: KNTs RAN, 2004.Google Scholar
  49. Rudnick, R.L. and Gao, S., The composition of the continental crust, Treatise on Geochemistry, Rudnick, R.L. Elsevier, 2003, vol. 3, pp. 1–64.Google Scholar
  50. Rundqvist, T.V., Pripachkin, P.V., and Grebnev, R.A., Relations of intrusive bodies in the contact zone of the Monchegorsk and Glavnyi mafic–ultramafic complexes (South Sopcha area, Kola Peninsula), Litosfera, no. 2012, no. 3, pp. 65–79.Google Scholar
  51. Schissel, D., Tsvetkov, A.A., Mitrofanov, F.P., et al., Basal platinum-group element mineralization in the Fedorov Pansky layered mafic intrusion, Kola Peninsula, Russia, Econ. Geol., 2002, vol. 97, pp. 1657–1677.CrossRefGoogle Scholar
  52. Sharkov E.V. Formirovanie rassloennykh intruzivov i svyazannogo s nimi orudeneniya (Formation of Layered Intrusions and Related Mineralization), Moscow: Nauchnyi mir, 2006.Google Scholar
  53. Sharkov, E.V. and Bogatikov, O.A., Concentration mechanisms of the platinum-group elements in layered intrusions of the Kola–Karelia Region, Geol. Ore Deposits, 1998, vol. 40, no. 5, pp. 372–390.Google Scholar
  54. Sharkov, E.V. and Chistyakov, A.V., The Early Paleoproterozoic Monchegorsk layered mafite-ultramafite massif in the Kola Peninsula: geology, petrology and ore potential, Petrology, 2012, vol. 20, no. 7, pp. 607–639.CrossRefGoogle Scholar
  55. Sharman, E.R., Penniston-Dorland, S.C., Kinnaird, J.A., et al., Primary origin of marginal Ni–Cu-(PGE) mineralization in layered intrusion: Δ33S evidence from the Platreef, Bushveld, South Africa, Econ. Geol., 2013, vol. 108, no. 2, pp. 365–377.CrossRefGoogle Scholar
  56. Sluzhenikin, S.F., Distler, V.V., Dyuzhikov, O.A., et al., Low-sulfide PGM mineralization in the Norilsk differentiated intrusions, Geol. Rudn. Mestorozhd., 1994, vol. 36, no. 3, pp. 195–217.Google Scholar
  57. Stumpfl, E.F. and Tarkin, M., Vincentite, a new palladium mineral from South-East Borneo, Mineral. Mag., 1974, vol. 39, pp. 525–527.CrossRefGoogle Scholar
  58. Subbotin, V.V., Korchagin A.U., and Savchenko, E.E., PGM mineralization of the Fedorova–Pana ore knot: mineralization types, mineral composition, and genesis, Vestn. Kol’sk. Nauchn. Ts., 2012, no. 1, pp. 55–66.Google Scholar
  59. Tuba, G., Molnar, F., Ames, D.E., et al., Multi-stage hydrothermal processes in “low-sulfide” Cu(–Ni)–PGE mineralization in the footwall of the Sudbury igneous complex (Canada): Amy Lake PGE zone, East Range, Miner. Deposita, 2014, vol. 49, pp. 7–47.CrossRefGoogle Scholar
  60. Verryn, S.M.C. and Merkle, R.K.W., The system PtS–PdS–NiS between 1200°C and 700°C, Can. Mineral., 2002, vol. 40, pp. 571–584.CrossRefGoogle Scholar
  61. Vrevsky A.B. Petrology, age, and polychronous sources of the initial magmatism of the Imandra–Varzuga Paleorift, Fennoscandian Shield, Petrology, 2011, vol. 19, no. 5, pp. 521–547.CrossRefGoogle Scholar
  62. Whitney, D.L. and Evans, B., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.CrossRefGoogle Scholar
  63. Yudovskaya, M., Kinnaird, J., Naldrett, A.J., et al., Facies variation in PGE mineralization in the Central Platreef of the Bushveld Complex, South Africa, Can. Mineral., 2012, vol. 49, no. 6, pp. 1349–1384.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Chashchin
    • 1
  • S. V. Petrov
    • 2
  • S. V. Drogobuzhskaya
    • 3
  1. 1.Geological Institute, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute of Rare-Elements Chemistry and Technology and Mineral Products, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia

Personalised recommendations