Advertisement

Geology of Ore Deposits

, Volume 60, Issue 4, pp 277–299 | Cite as

Composition of Fluids Responsible for Gold Mineralization in the Pechenga Structure of the Pechenga–Imandra–Varzuga Greenstone Belt, Kola Peninsula, Russia

  • V. Yu. Prokofiev
  • A. A. Kalinin
  • K. V. Lobanov
  • D. A. Banks
  • A. A. Borovikov
  • M. V. Chicherov
Article
  • 27 Downloads

Abstract

This study presents the first fluid inclusion data from quartz of albite–carbonate–quartz altered rocks and metasomatic quartzite hosting gold mineralization in the Pechenga structure of the Pechenga–Imandra–Varzuga greenstone belt. A temperature of 275–370°C, pressure of 1.2–4.5 kbar, and the fluid composition of gold-bearing fluid are estimated by microthermometry, Raman spectroscopy, and LA-ICP-MS of individual fluid inclusions, as well as by bulk chemical analyses of fluid inclusions. In particular, the Au and Ag concentrations have been determined in fluid inclusions. It is shown that albite–carbonate–quartz altered rocks and metasomatic quartzite interacted with fluids of similar chemical composition but under different physicochemical conditions. It is concluded that the gold-bearing fluid in the Pechenga structure is similar to that of orogenic gold deposits.

Keywords

gold deposits fluid inclusions physicochemical parameters mineral-forming fluids Pechenga 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhmedov, A.M., Voronyaeva, L.V., Pavlov, V.A., et al., Gold potential of the South Pechenga structural zone (Kola Peninsula): types of occurrences and prospects for discovery of economic gold contents, Regional. Geol. Metallogen., 2004, no. 20, pp. 139–151.Google Scholar
  2. Allan, M.M., Yardley, B.W.D., Forbes, L.J., et al., Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions, Am. Mineral., 2005, vol. 90, pp. 1767–1775.CrossRefGoogle Scholar
  3. Balagansky, V.V. and Belyaev, O.A., Gold-bearing shear zones in the Early Precambrian of the Kola Peninsula: forecasting and first results, Petrografiya XXI veka. T. 3. Petrologiya i rudonosnost' regionov SNG i Baltiiskogo shchita (Petrography of the 21st Century. Volume 3. Petrology and Ore Potential of the Regions of CIS and the Baltic Shield), Apatity: KNTs RAN, 2005, pp. 37–38.Google Scholar
  4. Balashov, Yu.A., Geochronology of the Paleoproterozoic rocks of the Pechenga–Varzuga structure of the Kola Peninsula, Petrologiya, 1996, vol. 4, no. 1, pp. 3–25.Google Scholar
  5. Bodnar, R.J. and Vityk, M.O., Interpretation of microterhmometric data for H2O-NaCl fluid inclusions, Fluid Inclusions in Minerals: Methods and Applications, Benedetto De Vivo & Maria Luce Frezzotti, Pontignano: Siena, 1994, pp. 117–130.Google Scholar
  6. Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D., and Steele-Maclnnes, P., Fluid inclusions in hydrothermal ore deposits, Reference Module in Earth Systems and Environmental Sciences. Treatise on Geochemistry, 2nd Edition, Elsevier, 2014, pp. 119–142.Google Scholar
  7. Borisenko, A.S., Cryometric study of salt composition of the gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.Google Scholar
  8. Brown, P., Flincor: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.Google Scholar
  9. Collins, P.L.P., Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity, Econ. Geol., 1979, vol. 74, pp. 1435–1444.CrossRefGoogle Scholar
  10. Duk, G.G., Strukturnaya–metamorficheskaya evolyutsiya porod Pechengskogo kompleksa (Structural–Metamorphic Evolution of the Rocks of the Pechenga Complex) Moscow-Leningrad: Nauka, 1977.Google Scholar
  11. Faure, G., Principles of Isotope Geology, New York; Wiley, 1986.Google Scholar
  12. Garofalo, P.S., Fricker, M.B., Gunther, D., et al., Physical-chemical properties and metal budget of Au-transporting hydrothermal fluids in orogenic deposits, Geol. Soc. London: Spec. Publ., 2014, vol. 402, pp. 71–102.CrossRefGoogle Scholar
  13. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., and Robert, F., Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 1998, vol. 13, pp. 7–27.CrossRefGoogle Scholar
  14. Guillong, M., Meier, D.L., Allan, M.M., et al., Appendix A6: SILLS: a Matlab-based program for the reductions of laser ablation ICP-MS data of homogenous materials and inclusions, Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Mineral. Ass. Canada, 2008, vol. 40, pp. 328–333.Google Scholar
  15. Ivashchenko, V.I. and Golubev, A.I., Zoloto i platina Karelii: formatsionno-geneticheskie tipy orudeneniya i perspektivy (Gold and Platinum: Formation-Genetic Types of Mineralization and Prospects), Petrozavodsk: IG Kar. NTs RAN, 2011.Google Scholar
  16. Kalinin, A.A., Bayanova T.B., Lyalina, L.M., et al., Gold occurrences of the Southern Pechenga structural zone: new isotope-geochemical data, Geologiya i geokhronologiya porodoobrazuyushchikh i rudnykh protsessov v kristallicheskikh shchitakh: Mater. Vserossiiskoi (s mezhdunarodnym uchastiem) konf., Apatity, 2013 (Geology and Geochronology of the Rock-Forming and Ore Processes in the Crystalline Shields. Proceedings of All-Russian Conference with International Participance), Apatity, 2013, pp. 69–71.Google Scholar
  17. Kazitsyn, Yu.V and Rudnik, V.A., Rukovodstvo k raschetu balansa veshchestva i vnutrennei energii pri formirovanii metasomaticheskikh porod (A Handbook to Calculation of Mass Balance and Internal Energy during Formation of Metasomatic Rocks), Moscow: Nedra, 1968.Google Scholar
  18. Kryazhev, S.G., Prokof’ev, V.Yu., and Vasyuta, Yu.V., Application of ICP MS mehod in analyzing composition of ore-forming fluids, Vestn. Mosk. Gos. Univ., Ser. 4 Geol., 2006, no. 4, pp. 30–36.Google Scholar
  19. Melezhik, V.A. and Sturt, B.A., General geology and evolutionary of the Early Proterozoic Polmak–Pasvik–Pechenga–Imandra/Varzuga–Ust’ponoy greenstone belt in the northeastern Baltic Shield, Earth Sci. Rev., 1994, vol. 36, pp. 205–241.CrossRefGoogle Scholar
  20. Mints, M.V., Glaznev, V.N., Konilov, A.N., et al., Rannii dokembrii severo-vostoka Baltiiskogo shchita: Paleogeodinamika, stroenie i evolyutsiya kontinental’noi kory (Early Precambrian of the Norheastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of Continental Crust), Moscow: Nauchnyi mir, 1996.Google Scholar
  21. Naumov, V.B., Dorofeeva, V.A., and Mironova, O.F., Physicochemical formation parameters of hydrothermal mineral deposits: evidence from fluid inclusions. II. Gold, silver, lead, and zink deposits, Geochem. Int., 2014, vol. 52, no. 6, pp. 433–455.CrossRefGoogle Scholar
  22. Pokrovski, G.S., Akinfiev, N.N., Borisova, A.Y., et al., Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modeling, Geol. Soc. London: Spec. Publ., 2014, vol. 402, pp. 9–70.CrossRefGoogle Scholar
  23. Prokofiev, V.Yu., Banks, D.A., Lobanov, K.V., et al., Aurich fluid inclusions in gold-bearing quartz from the Kola superdeep borehole (SG-3), Bull. Geol. Soc. Finland. Spec. Volume. Abstracts of the 32nd Nordic Geological Winter Meeting, 2016. Helsinki: Finland. Geological Society of Finland, 2016.Google Scholar
  24. Ridley, J.R. and Diamond, L.W., Fluid chemistry of orogenic lode gold deposits and implications for genetic models, Gold in 2000. SEG Reviews, 2000, vol. 13, pp. 141–162.Google Scholar
  25. Saunders, J.A. and Burke, M., Formation and aggregation of gold (Electrum) nanoparticles in epithermal ores, Minerals, 2017, vol. 7, no. 7, p. 163.  https://doi.org/10.3390/min709016 CrossRefGoogle Scholar
  26. Seismologicheskaya model' litosfery severnoi Evropy: Laplandsko-Pechengskii raion (Seismological Model of the Lithosphere of Northern Europe: Lapland–Pechenga Area), Sharov, N.V, Eds., Apatity: KNTs RAN, 1997.Google Scholar
  27. Skuf’in, P.K., Bayanova, T.B., Mitrofanov, F.P., et al., The absolute age of granitoids from the Shuoniyavri Pluton in the southern framework of the Pechenga Structure, the Kola Peninsula, Dokl. Earth Sci., 2000, vol. 370, no. 1, pp.114–117.Google Scholar
  28. Skuf’in, P.K. and Theart, H.F.J., Geochemical and tectono-magmatic evolution of the volcano-sedimentary rocks of Pechenga and other greenstone fragments within the Kola greenstone belt, Russia, Precambrian Res., 2005, vol. 141, pp. 1–48.CrossRefGoogle Scholar
  29. Skuf’in, P.K., Elizarov, D.V., and Zhavkov, V.A., Geology and geochemistry of the volcanic rocks of the South Pechenga Lithotectonic Zone, Vestn. Murmansk. Gos. Tekhn. Univ., 2009, vol. 12, no. 3, pp. 416–435.Google Scholar
  30. Smol’kin, V.F., Mitrofanov, F.P., Avedisyan, A.A., et al., Magmatizm, sedimentogenez i geodinamika Pechengskoi paleoriftogennoi struktury (Magmatism, Sedimentogenesis, and Geodynamics of the Pechenga Paleorift Structure), Apatity: KNTs RAN, 1995.Google Scholar
  31. Sundblad, K., Metallogeny of gold in the Precambrian of Northern Europe, Econ. Geol., 2003, vol. 98, pp. 1271–1290.CrossRefGoogle Scholar
  32. Vetrin, V.R., Petrology of Granitoids in the southern framing of Pechenga (Kola Peninsula), Izv. Akad. Nauk SSSR, Ser. Geol., 1988, no. 6, pp. 20–33.Google Scholar
  33. Voronyaeva, L.V., Geology and Gold Potential of the South Pechenga Structural Zone, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, St. Petersburg: VSEGEI, 2008.Google Scholar
  34. Zharikov, V.A., Rusinov, V.L., Marakushev, A.A., et al., Metasomatizm i metasomaticheskie porody (Metasomatism and Metasomatic Rocks), Moscow: Nauchnyi mir, 1998.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Yu. Prokofiev
    • 1
  • A. A. Kalinin
    • 2
  • K. V. Lobanov
    • 1
  • D. A. Banks
    • 3
  • A. A. Borovikov
    • 4
  • M. V. Chicherov
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Geological Institute, Kola Science CenterRussian Academy of SciencesApatityRussia
  3. 3.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  4. 4.Institute of Mineralogy and Petrography, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations