Advertisement

Geology of Ore Deposits

, Volume 59, Issue 7, pp 652–661 | Cite as

Crystal Chemistry of Pyroaurite from the Kovdor Pluton, Kola Peninsula, Russia, and the Långban Fe–Mn deposit, Värmland, Sweden

  • E. S. Zhitova
  • G. Yu. Ivanyuk
  • S. V. Krivovichev
  • V. N. Yakovenchuk
  • Ya. A. Pakhomovsky
  • Yu. A. Mikhailova
Mineralogical Crystallography

Abstract

Pyroaurite [Mg6Fe23+ (OH)16][(CO3)(H2O)] from the Kovdor Pluton on the Kola Peninsula, Russia, and the Långban deposit in Filipstad, Värmland, Sweden were studied with single crystal and powder X-ray diffraction, an electron microprobe, and Raman spectroscopy. Both samples are rhombohedral, space group Rm, a = 3.126(3), c = 23.52(2) Å (Kovdor), and a = 3.1007(9), c = 23.34(1) (Långban). The powder XRD revealed only the 3R polytype. The ratio of di- and trivalent cations M2+: M3+ was determined as ~3.1–3.2 (Kovdor) and ~3.0 (Långban). The Raman spectroscopy of the Kovdor sample verified hydroxyl groups and/or water molecules in the mineral (absorption bands in the region of 3600–3500 cm–1) and carbonate groups (absorption bands in the region of 1346–1058 cm–1). Based on the data obtained, the studied samples should be identified as pyroaurite-3R (hydrotalcite group).

Keywords

pyroaurite Kovdor Långban 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allmann, R., The crystal structure of pyroaurite, Acta Crystallogr., 1968, vol. 24, pp. 972–277.CrossRefGoogle Scholar
  2. Allmann, R. and Jepsen, H.P., Die structur des hydrotalkits, Neues Jahrb. Mineral. Monatsh., 1969, vol. 1969, pp. 544–551.Google Scholar
  3. Aminoff, G. and Broomé, B., Contributions to the mineralogy of Långban. III. Contributions to the knowledge of the mineral pyroaurite, Kungliga Svenska Vetenskapsakademiens Handlingar, 1931, vol. 9, pp. 23–48.Google Scholar
  4. Bonaccorsi, E., Merlino, S., and Orlandi, P., Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships, Am. Mineral., 2007, vol. 92, pp. 198–203.CrossRefGoogle Scholar
  5. Bookin, A.S. and Drits, V.A., Polytype diversity of the hydrotalcite-like minerals. I. Possible polytypes and their diffraction features, Clays Clay Miner., 1993, vol. 41, pp. 551–557.CrossRefGoogle Scholar
  6. Cooper, M.A. and Hawthorne, F.C., The crystal structure of shigaite, [AlMn2(OH)6]3(SO4)2Na(H2O)6{H2O}6, a hydrotalcite-group mineral, Can. Mineral., 1996, vol. 34, pp. 91–97.Google Scholar
  7. Costantino, U., Vivani, R., Bastianini, M., Costantino, F., and Nocchetti, M., Ion exchange and intercalation properties of layered double hydroxides towards halide anions, Dalton Trans., 2014, vol. 43, pp. 11 587–11 596.CrossRefGoogle Scholar
  8. Crepaldi, E.L., Pavan, P.C., and Valim, J.B., A new method of intercalation by anion exchange in layered double hydroxides, Chem. Commun., 1999, vol. 1999, no. 2, pp. 155–156.CrossRefGoogle Scholar
  9. Evans, D.G. and Slade, R.C.T., Structural Aspects of Layered Double Hydroxides, Berlin: Springer, 2006.Google Scholar
  10. Flink, G., Mineralogische Notizen, Bull. Geol. Inst. Univ. Uppsala, 1910, vol. 5, pp. 81–95.Google Scholar
  11. Frondel, C., Constitution and polymorphism of the pyroaurite and sjogrenite groups, Am. Mineral., 1941, vol. 26, pp. 295–315.Google Scholar
  12. Frost, R.L. and Reddy, B.J., Thermo-raman spectroscopic study of the natural layered double hydroxide manasseite, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2006, vol. 65, nos. 3–4, pp. 553–559.CrossRefGoogle Scholar
  13. Frost, R.L., Palmer, S.J., and Grand, L.-M., Synthesis and Raman spectroscopy of indium-based hydrotalcites of formula Mg6In2(CO3)(OH)16 · 4H2O, J. Raman Spectrosc., 2010, vol. 41, no. 12, pp. 1797–1802.CrossRefGoogle Scholar
  14. Génin, J.-M.R., Aissa, R., Genin, A., Abdelmoula, M., Benali, O., Ernstsen, V., Ona-Nguema, G., Upadhyay, C., and Ruby, C., Fougerite and FeII–III hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide Fe(OH)(2 + x), Solid State Sci., 2005, vol. 7, pp. 545–572.CrossRefGoogle Scholar
  15. Greenwell, H.C., Bindley, L.A., Unwin, P.R., Holliman, P.J., Jones, W., Coveney, P.V., and Barnes, S.L., In situ monitoring of crystals growth and dissolution of oriented layered double-hydroxide crystals immobilized on silicon, J. Cryst. Growth, 2006, vol. 294, pp. 53–59.CrossRefGoogle Scholar
  16. Huang, L., Wang, J., Gao, Y., Qiao, Y., Zheng, Q., Guo, Z., and Zhao, Y., O’hare, D., and Wang, Q., Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range, J. Mater. Chem., 2014, vol. 2, pp. 18454–18462.CrossRefGoogle Scholar
  17. Huminicki, D.M.C. and Hawthorne, F.C., The crystal structure of nikischerite, NaFeAl3(SO4)2(OH)18(H2O)12, a mineral of the shigaite group, Can. Mineral., 2003, vol. 41, pp. 79–82.CrossRefGoogle Scholar
  18. Igelstörm, L.J., Nya och sällsynta mineralier fran Vermalands och Őrebro län, Őfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, 1865, vol. 16, pp. 399–400.Google Scholar
  19. Ingram, L. and Taylor, H.F.W., The crystal structure of sjögrenite and pyroaurite, Mineral. Mag., 1967, vol. 36, pp. 465–479.CrossRefGoogle Scholar
  20. Ivanyuk, G.Yu., Yakovenchuk, V.N., and Pakhomovsky, Ya.A., Kovdor. Apatity: Laplandia mineral, 2002, p. 326.Google Scholar
  21. Kaneyoshi, M. and Jones, W., Formation of Mg–Al layered double hydroxides intercalated with nitrilotriacetate anions, J. Mater. Chem., 1999, vol. 9, pp. 805–811.CrossRefGoogle Scholar
  22. Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Ya.A., and Ivanyuk, G.Yu., Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H–3C from Kovdor alkaline massif, Kola Peninsula, Russia, Mineral. Mag., 2010a, vol. 74, no. 5, pp. 821–832.Google Scholar
  23. Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Ya.A., and Ivanyuk, G.Yu., Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M: first evidence of monoclinic polytype in M2+–M3+ layered double hydroxides, Mineral. Mag., 2010b, vol. 74, no. 5, pp. 833–840.Google Scholar
  24. Krivovichev, S.V., Antonov, A.A., Zhitova, E.S., Zolotarev, A.A., Krivovichev, V.G., and Yakovenchuk, V.N., Quintinite-1M from Bazhenovskoe deposit (Middle Urals, Russia): crystal structure and properties), Vestn. Sankt.-Peterburg. Univ., Ser. 7, 2012, no. 2, pp. 3–10.Google Scholar
  25. Krivovichev, S.V., Yakovenchuk, V.N., and Zhitova, E.S., Natural double layered hydroxides: structure, chemistry, and information storage capacity, in Minerals as Advanced Materials II, Berlin: Springer, 2012, pp. 87–91.CrossRefGoogle Scholar
  26. Kukharenko, A.A., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, Ye.I., Il’inskiy, G.A., Sergeyev, A.S., and Abakumova, N.B., Kaledonskii kompleks ul’trasnovnykh, shchelochnykh porod I karbonatity Kol’skogo poluostrova i severnoi Karelii (Caledonian Complex of Ultramafic, Alkaline Rocks and Carbonatites of the Kola Peninsula and Northern Karelia) Moscow: Nedra, 1965.Google Scholar
  27. Manasse, E., Rocce eritree e di aden della collezione issel, Atti della Societa Toscana di Scienze Naturali, Processi Verbali, 1915, vol. 24, p. 92.Google Scholar
  28. Manohara, G.V., Exfoliation of layered double hydroxides (LDHs): a new route to mineralize atmospheric CO2, RSC Adv., 2014, vol. 4, no. 86, pp. 46 126–46 132.CrossRefGoogle Scholar
  29. Meyn, M., Beneke, K., and Lagaly, G., Anion-exchange reactions of layered double hydroxides, Inorg. Chem., 1990, vol. 29, no. 26, pp. 5201–5207.CrossRefGoogle Scholar
  30. Mikhailova, J.A., Kalashnikov, A.O., Sokharev, V.A., Pakhomovsky, Ya.A., Konopleva, N.G., Yakovenchuk, V.N., Bazai, A.V., Goryainov, P.M., and Mikhailova J. A., Kalashnikov A. O., Sokharev V. A., Pakhomovsky Ya.A., Konopleva, N. G., Yakovenchuk, V. N., Bazai, A. V., Goryainov, P. M., and Ivanyuk, G.Yu., 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia), Miner. Deposita, 2015, vol. 51, pp. 131–149.CrossRefGoogle Scholar
  31. Mills, S.J., Whitfield, P.S., Wilson, S.A., Woodhouse, J.N., Dipple, G.M., Raudsepp, M., and Francis, C.A., The crystal structure of stichtite. Re-examination of barbertonite, and the nature of polytypism in MgCr hydrotalcites, Am. Mineral., 2011, vol. 96, pp. 179–187.CrossRefGoogle Scholar
  32. Mills, S.J., Christy, A.G., Genin, J-M.R., Kameda, T., and Colombo, F., Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides, Mineral. Mag., 2012a, vol. 76, pp. 1289–1336.Google Scholar
  33. Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J.-C., and Bourgoin, V., Zincalstibite-9R: the first nine-layer polytype with the layered double hydroxide structure-type, Mineral. Mag., 2012b, vol. 76, pp. 1337–1345.Google Scholar
  34. Mills, S.J., Kampf, A.R., Housley, R.M., Favreau, G., Pasero, M., Biagioni, C., Merlino, S., Berbain, C., and Orlandi, P., Omsite, (Ni,Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from oms, france, Mineral. Mag., 2012c, vol. 76, pp. 1347–1354.Google Scholar
  35. Mills, S.J., Whitfield, P.S., Kampf, A.R., Wilson, S.A., Dipple, G.M., Raudsepp, M., and Favreau, G., Contribution to the crystallography of hydrotalcites: the crystal structures of woodallite and takovite, J. Geosci., 2012d, vol. 58, pp. 273–279.Google Scholar
  36. Mills, S.J., Christy, A.G., and Schmitt, R.T., The creation of neotypes for hydrotalcite, Mineral. Mag., 2015. V. 80. In press.Google Scholar
  37. Moreira, R.F.P.M., Soares, J.L., Casarin, G.L., and Rodrigues, A.E., Adsorption of CO2 on hydrotalcite-like compounds in a fixed bed, Separation Sci. Technol., 2006, vol. 41, pp. 341–357.CrossRefGoogle Scholar
  38. Olowe, A., Crystal structures of pyroaurite and sjoegrenite, Adv. X-Ray Anal., 1995, vol. 38, pp. 749–755.Google Scholar
  39. Radha, A.V., Kamath, P.V., and Shivakumara, C., Mechanism of the anion exchange reactions of the layered double hydroxides (LDHs) of Ca and Mg with Al, Solid State Sci., 2005, vol. 7, no. 10, pp. 1180–1187.CrossRefGoogle Scholar
  40. Ram Reddy, M.K., Xu, Z.P., Lu, G.Q.M., and Diniz Da Costa, J.C., Layered double hydroxides for CO2 capture: structure evolution and regeneration, Ind. Eng. Chem. Res., 2006, vol. 45, no. 22, pp. 7504–7509.CrossRefGoogle Scholar
  41. Rius, J. and Allmann, R., The superstructure of the double layer mineral wermlandite, [Mg7(Al0.57), Fe0.43 3+) (OH) 18]2+ [(Ca0.6,Mg0.4)(SO4)2(H2O)12]2–, locality: Langban, Warmland, Sweden, Z. Kristallogr., 1984, vol. 168, pp. 133–144.CrossRefGoogle Scholar
  42. Rozov, K., Berner, U., Taviot-Gueho, C., Leroux, F., Renaudin, G., Kulik, D., and Diamond, L.W., Synthesis and characterization of the LDH hydrotalcite–pyroaurite solid-solution series, Cement Concrete Res., 2010, vol. 40, no. 8, pp. 1248–1254.CrossRefGoogle Scholar
  43. Sheldrick, G.M., A short history of SHELX, Acta Crystallogr., 2008, vol. A64, pp. 112–122.Google Scholar
  44. Sjögren, H., Contributions to Swedish mineralogy. Part II. Bull. Geol. Inst. Univ. Uppsala, 1894, vol. 2, pp. 39–74.Google Scholar
  45. Speck, A., Single-crystal structure validation with the program Platon, J. Applied Cryst, 2003, vol. 36, pp. 7–13.CrossRefGoogle Scholar
  46. Walenta, K., Cualstibite, a new secondary mineral from the Clara Mine in the Central Black Forest (FRG), Chem. Erde, 1984, vol. 43, pp. 255–260.Google Scholar
  47. Zhitova, E.S., Yakovenchuk, V.N., Krivovichev, S.V., Zolotarev, A.A., Pakhomovsky, Ya.A., and Ivanyuk, G.Yu., Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg,Al-disordered quintinite-2H, Mineral. Mag., 2010, vol. 74, no. 5, pp. 841–848.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. S. Zhitova
    • 1
    • 3
  • G. Yu. Ivanyuk
    • 2
  • S. V. Krivovichev
    • 1
    • 2
  • V. N. Yakovenchuk
    • 2
  • Ya. A. Pakhomovsky
    • 2
  • Yu. A. Mikhailova
    • 2
  1. 1.Institute of the Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Kola Scientific CenterRussian Academy of SciencesApatity, Murmansk oblastRussia
  3. 3.Institute of Volcanology and Seismology, Far East BranchRussian Academy of SciencesPetropavlovsk-KamchatskyRussia

Personalised recommendations