Advertisement

Geology of Ore Deposits

, Volume 59, Issue 7, pp 619–625 | Cite as

Barringerite Fe2P from Pyrometamorphic Rocks of the Hatrurim Formation, Israel

  • S. N. Britvin
  • M. N. Murashko
  • E. Vapnik
  • Yu. S. Polekhovsky
  • S. V. Krivovichev
Minerals and Mineral Assemblages

Abstract

The article provides a detailed mineralogical and crystallochemical description (including refinement of the crystal structure) of the first finding of the phosphide class mineral barringerite, Fe2P, from terrestrial pyrometamorphic rocks of the Hatrurim Formation in Israel. The mineral occurs in the association of the so-called paralavas—initially silicate—carbonate sedimentary rocks that remelted during pyrometamorphic processes at a temperature above 1000°C and at a low pressure. Questions on the genesis and crystal chemistry of barringerite are discussed in connection with another polymorphic iron phosphide, allabogdanite (Fe,Ni)2P.

Keywords

phosphide class minerals barringerite allabogdanite pyrometamorphism Hatrurim Formation Israel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borodaev, Yu.S., Bogdanov, Yu.A., and Vyalsov, L.N., New nickel-free variety of schreibersite Fe3P, Zap. Ross. Mineral. O-va, 1982, vol. 111, no. 6, pp. 682–687.Google Scholar
  2. Brandstätter, F., Nazarov, M.A., and Kurat, G., Barringerite from the Santa Catharina ungrouped iron meteorite, Lunar Planet Sci., vol. 34, 2003, Abstract 1681.Google Scholar
  3. Bridge, T., Bredigite, larnite and γ dicalcium silicates from Marble Canyon, Am. Mineral., 1966, vol. 51, pp. 1766–1774.Google Scholar
  4. Britvin, S.N., Rudashevsky, N.S., Krivovichev, S.V., Burns, P.C., and Polekhovsky, Yu.S., Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure, Am. Mineral., 2002, vol. 87, pp. 1245–1249.CrossRefGoogle Scholar
  5. Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., and Krivovichev, S.V., Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus, Sci. Rept., 2015, vol. 5, p. 8355.CrossRefGoogle Scholar
  6. Buchwald, V.F., The mineralogy of iron meteorites, Phil. Trans. R. Soc., London, 1997, vol. A286, pp. 453–491.Google Scholar
  7. Burg, A., Starinsky, A., Bartov, Y., and Kolodny, Y., Geology of the Hatrurim Formation (“mottled zone”) in the Hatrurim Basin, Isr. J. Earth Sci., 1992, vol. 40, pp. 107–124.Google Scholar
  8. Buseck, P.R., Phosphide from meteorites: barringerite, a new iron–nickel mineral, Science, 1969, vol. 165, pp. 169–171.CrossRefGoogle Scholar
  9. Chen, K., Jin, Z., and Peng, Z., The discovery of iron barringerite, (Fe2P), in China, Sci. Geol. Sinica, 1983, pp. 199–202.Google Scholar
  10. Doan, A.S., Barringerite: how it formed in the Ollague pallasite, Meteoritics, 1969, vol. 4, pp. 269–270.Google Scholar
  11. Drabek, M., Phosphide solid-solutions within the metalrich portion of the Quarternary system Co–Fe–Ni–P at 800°C, and mineralogical implications, Can. Mineral., 2006, vol. 44, pp. 399–408.CrossRefGoogle Scholar
  12. Eremenko, G.K., Polkanov, Yu.A., and Gevork’yan, V.Kh., Cosmogenic minerals in the Poltava deposits of the Konka–Yalynsk depression in northern Azov Region, Mineral. Osadochn. Obrazov., 1974, vol. 1, pp. 66–76.Google Scholar
  13. Essene, E.J. and Fisher, D.C., Lightning strike fusion: extreme reduction and metal–silicate liquid immiscibility, Science, 1986, vol. 234, pp. 189–193.CrossRefGoogle Scholar
  14. Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Ye., Dulski, M., Murashko, M., Dzierzanowski, P., Sharygin, V.V., Krivovichev, S.V., and Wirth, R., Mayenite supergroup, Part III: fluormayenite, Ca12Al14O32[□4F2], and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals from pyrometamorphic rocks of the Hatrurim Complex, South Levant, Eur. J. Mineral., 2015, vol. 27, pp. 123–136.CrossRefGoogle Scholar
  15. Gounelle, M., Zolensky, M.E., Liou, J.-C., Bland, P.A., and Alard, O., Mineralogy of carbonaceous chondritic microclasts in howardites: identification of CM2 fossil micrometeorites, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 507–527.CrossRefGoogle Scholar
  16. Gross, S., The mineralogy of the Hatrurim Formation, Israel, Bull. Geol. Surv. Israel, 1977, vol. 70, pp. 1–80.Google Scholar
  17. Ivanova, M.A., Nazarov, M.A., Brandstaetter, F., Moroz, L.V., Ntaflos, Th., and Kurat, G., Mineralogical differences between metamorphosed and non-metamorphosed CM chondrites, Lunar Planet. Sci., vol. 34, 2005, Abstract 1054.Google Scholar
  18. Kopylova, A.G., Oleinikov, B.V., Sobolev, N.V., and Sushko, O.A., New iron meteorite Onello, a unique nickel-rich ataxite, Dokl. Earth Sci., 1999, vol. 368, no. 7, pp. 899–902.Google Scholar
  19. Kopylova, A.G. and Oleinikov, B.V., Phosphides and phosphorous sulfides from Onello meteorite, Zap. Ross. Mineral. O-va, 2000, vol. 129, pp. 37–43.Google Scholar
  20. Kumar, S., Chander, S., Krishnamurthy, A., and Srivastava, B.K., Magnetic behaviour of alloys in the series (Fe1‒xCOx)2P, J. Magnetism Magnetic Mater., 2001, vol. 237, pp. 135–142.CrossRefGoogle Scholar
  21. Larsson, E., An X-ray investigation of the Fe–P system and the crystal structures of NiP and NiP2, Arkiv foer Kemi, 1965, vol. 23, pp. 335–365.Google Scholar
  22. Nazarov, M.F., Brandstaetter, F., and Kurat, G., Phosphides and P-rich sulfides in the Mighei (CM) chondrite, Lunar. Planet. Sci., 1996, vol. 27, pp. 939–940.Google Scholar
  23. Nazarov, M.A., Brandstaetter, F., and Kurat, G., Comparative chemistry of P-rich phases in CM chondrites, Lunar Planet. Sci., 1997, vol. 28, Abstract 1466.Google Scholar
  24. Nazarov, M.A., Brandstaetter, F., and Kurat, G., Phosphide sulfides and phosphides in CM chondrites, Geochem. Int., 1998, vol. 36, no. 5, pp. 475–484.Google Scholar
  25. Nazarov, M.A., Kurat, G., Brandstaetter, F., Ntaflos, T., Chaussidon, M., and Hoppe, P., Phosphorus-bearing sulfides and their associations in CM chondrites, Petrology, 2009, vol. 17, pp. 101–123.CrossRefGoogle Scholar
  26. Planetary Materials, Papike, J.J., Ed., Rev. Mineral., 1998, vol. 36.Google Scholar
  27. Pasek, M.A., Rethinking early earth phosphorus geochemistry, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 853–858.CrossRefGoogle Scholar
  28. Pasek, M.A., Block, K., and Pasek, V., Fulgurite morphology: a classification scheme and clues to formation, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 477–492.CrossRefGoogle Scholar
  29. Pedersen, A.K., Armalcolite-bearing Fe–Ti oxide assemblages in graphite-equilibrated salic volcanic rocks with native iron from Disko, central West Greenland, Contrib. Mineral. Petrol., 1981, vol. 77, pp. C. 307–324.CrossRefGoogle Scholar
  30. Sheldrick, G.M., A short history of SHELX, Acta Crystallogr., 2008, vol. A64, pp. 112–122.CrossRefGoogle Scholar
  31. Sokol, E.V., Nigmatulina, E.N., and Frenkel, A.E., Parabasalts from the burned coal dumps of the Chelyabinsk lignite basin, Ural Miner. Sb., 2000, no. 10, pp. 224–239.Google Scholar
  32. Strunz, H. and Nickel, E.H., Strunz Mineralogical Tables. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 2001.Google Scholar
  33. Tilley, C.E., On larnite (calcium orthosilicate, a new mineral) and its associated minerals from the limestone contact-zone of Scawt Hill, Co. Antrim, Mineral. Mag., 1929, vol. 22, pp. 77–86.CrossRefGoogle Scholar
  34. Yang, J.S., Bai, W.J., Rong, H., Zhang, Z.M., Xu, Z.Q., Fang, Q.S., Yang, B.G., Li, T.F., Ren, Y.F., Chen, S.Y., Hu, J.-Z., Su, J.F., and Mao, H.K., Discovery of Fe2P alloy in garnet peridotite from the Chinese continental scientific drilling project (CCSD) main hole, Acta Petrol. Sinica, 2005, vol. 21, pp. 271–276.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. N. Britvin
    • 1
    • 2
  • M. N. Murashko
    • 1
  • E. Vapnik
    • 3
  • Yu. S. Polekhovsky
    • 1
  • S. V. Krivovichev
    • 1
    • 2
  1. 1.Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Nanomaterials Center, Kola Science CenterRussian Academy of SciencesApatityRussia
  3. 3.Ben-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations