Advertisement

Geology of Ore Deposits

, Volume 59, Issue 6, pp 453–481 | Cite as

New Promising Gold-Ore Objects in the Strelna Greenstone Belt, Kola Peninsula

  • A. A. Kalinin
  • O. V. Kazanov
  • N. M. Kudryashov
  • G. F. Bakaev
  • S. V. Petrov
  • D. V. Elizarov
  • L. V. Lyalina
Article

Abstract

Data on gold ore objects in the Strelna Greenstone Belt in the southeastern Kola Peninsula are presented in the paper. The studied Vorgovy and Sergozero ore occurrences are localized in the zone of tectonic contact of the Neoarchean complexes making up the greenstone belt and the volcanic–sedimentary sequences of the Paleoproterozoic Imandra–Varzuga Zone. The Vorgovy gold occurrence is related to stockwork of carbonate–quartz veins and veinlets hosted in a biotite gneiss transformed into chlorite–sericite–quartz metasomatic rock with pyrrhotite–arsenopyrite dissemination. The Sergozero occurrence is localized in amphibolites corresponding to komatiitic and tholeiitic basalts hosted in biotite gneiss (metapelite). Mineralization is confined to the zone of tectonized contact between komatiitic and tholeiitic basalts, where it is controlled by a strip of metasomatic biotite–calcite rock with gersdorffite–arsenopyrite dissemination. The native gold grains medium to high in fineness are up to 0.1 mm in size and mainly localized at the contact of arsenopyrite and gersdorffite with gangue minerals. Gold mineralization is of superimposed character, and, as indicated by isotopic geochronology, was formed at the retrograde stage of the Svecofennian regional metamorphism. Comparison of ore occurrences localized in the Strelna Greenstone Belt with gold deposits in greenstone belts of the western Fennoscandian Shield and the Superior Province in Canada allows us to suggest a high perspective of the entire Strelna Belt for gold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astaf’ev, B.Yu. and Voinova O.A., Composition, age, and genesis of rocks of the Tersky greenstone belt (Kola Peninsula), in Magmatizm i metamorfizm v istorii Zemli: Tezisy XI Vseross. petrograficheskogo soveshchaniya (Magmatism and Metamorphism in the Earth’s Evolution. Proceedings of 11th Petrographic Conference), Ekaterinburg, 2010, pp. 61–62.Google Scholar
  2. Astaf’ev, B.Yu., Voinova, O.A., Levskii, L.K., and Voinov, A.S., New data on dating of metamorphic and metasomatic rocks of the Tersky greenstone belt (Kola Peninsula), in Sovremennye problemy magmatizma i metamorfizma: Mater. Vseross. konf., posv. 150-letiyu akademika F.Yu. Levinsona-Lessinga i 100-letiyu professora G.M. Saranchinoi (Modern Problems of Magmatism and Metamorphism. Proceedings of All-Russia’s Conference dedicated to the 150th Anniversary of F.Yu. Levinson-Lessing and 100th Anniversary of Professor G.M. Saranchin), St.-Petersburg: SPbGU, 2012, vol. 1, pp. 51–53.Google Scholar
  3. Astaf’ev, B.Yu., Levchenkov, O.A., Rizvanova, N.G., Voinova, O.A., Voinov, A.S., Levskii, L.K., Makeev, A.F., and Lokhov, K.I. Geological Structure and Isotopic–Geochronologic Study of Rocks from the Strel’na Segment of the Terskii Greenstone Belt, Kola Peninsula, Stratigraphy. Geol. Correlation, 2010, vol. 18, no. 1, pp. 1–15.CrossRefGoogle Scholar
  4. Ayer, J., Amelin, Y., Corfu, F., Kamo, S., Ketchum, J., Kwok, K., and Trowell, N., Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation, Precambrian Res., 2002, vol. 115, pp. 63–95.CrossRefGoogle Scholar
  5. Balagansky, V.V., Main Stages in the Paleoproterozoic Tectonic Evolution of the Northeastern Baltic Shield, Extended Absract of Doctoral (Geol.-Min.) Dissertation, St. Petersburg: SPbGU, 2002.Google Scholar
  6. Balagansky, V.V., Mints M.V., and Daly, J.S., Paleoproterozoic Lapland–Kola orogen, in Stroenie i dinamika litosfery Vostochnoi Evropy. Rezul’taty issledovanii po programme EUROPROBE (Structure and Dynamics of the East European Lithosphere. Results of Studies of the EUROPROBE program), Geokart/Geos: Moscow, 2006, pp. 158–171.Google Scholar
  7. Bortnikov, N.S., On reliability of the arsenopyrite and arsenopyrite–sphalerite geothermometers, Geol. Ore Deposits, 1993, vol. 35, no. 2, pp. 177–191.Google Scholar
  8. Daly, J.S., Balagansky, V.V., Timmerman, M.J., Whitehouse, M.J., de Jong, K., Guise, P., Bogdanova, S., Gorbatschev, R., and Bridgwater, D., Ion microprobe U-Pb zircon geochronology and isotopic evidence for a transcrustal suture in the Lapland–Kola orogen, northern Fennoscandian Shield, Precambrian Res., 2001, vol. 105, pp. 289–314.CrossRefGoogle Scholar
  9. Daly, J.S., Balagansky, V.V., Timmerman, M.J., and Whitehouse, M.J., The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere, in European Lithosphere Dynamics, Gee, D.G. and Stephenson, R. A., Eds., Geol. Soc. London Mem., 2006, vol. 32, pp. 579–598.Google Scholar
  10. Davis, D.W., U-Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics, Precambrian Res., 2002, vol. 115, pp. 97–117.CrossRefGoogle Scholar
  11. Dube, B. and Gosselin, P., Greenstone-hosted quartz-carbonate vein deposits. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, Geol. Assoc. Can. Miner. Deposits Div., Spec. Publ., 2007, vol. 5, pp. 49–73.Google Scholar
  12. Dube, B., Williamson, K., McNicoll, V., Malo, M., Skulski, T., Twomey, T., and Sanborn-Barrie, M., Timing of gold mineralization in the Red Lake gold camp, northwestern Ontario, Canada: new constraints from U-Pb geochronology at the Goldcorp high-grade zone, Red Lake mine and at the Madsen mine, Econ. Geol., 2004, vol. 99, pp. 1611–1641.Google Scholar
  13. Eilu, P., FINGOLD—a public database on gold deposits in Finland, Geol. Surv. Finland. Rept. of Investigation, vol. 146, 2009.Google Scholar
  14. Eisenlohr, B.N., Groves, D.I., and Partington, G.A., Crustal-scale shear zones and their significance to Archaean gold mineralization in western Australia, Mineral. Deposita, 1989, vol. 24, pp. 1–8.CrossRefGoogle Scholar
  15. Gavrilenko, B.V., Metallogeny of Noble Metals and Diamonds of the Northeastern Baltic Shield, Doctoral (Geol.-Min.) Dissertation, Apatity, 2003.Google Scholar
  16. Gavrilenko, B.V. and Kalinin, A.A., Mineralogical-geochemical aspects of gold and silver metallogeny of the Kola region, in Problemy zolotonosnosti i almazonosnosti Severa evropeiskoi chasti Rossii (Problems of the Gold and Diamond Potential of the Northern European Russia), Petrozavodsk, 1997, pp. 68–73.Google Scholar
  17. Glubinnoe stroenie, evolyutsiya i poleznye iskopaemye rannedokembriiskogo fundamenta Vostochno-Evropeiskoi platformy: interpretatsiya materialov po opornomu profilyu 1-EV, profilyam 4V i TATSEIS (Deep Structure, Evolution, and Mineral Resources of the Early Precambrian Basement of the East European Platform: Interpretation of Minerals on the 1-EV, 4V, and TATSEIS Profiles) Mints, M.V., Ed., Moscow: GEOKART: GEOS, 2010, Vol. 1.Google Scholar
  18. Goldfarb, R.J., Groves, D.I., and Gardoll, S., Orogenic gold and geologic time: a global synthesis, Ore. Geol. Rev., 2001, vol. 18, pp. 1–75.CrossRefGoogle Scholar
  19. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1000000 (tret’e pokolenie). Seriya Baltiiskaya. List Q_37-Arkhangel’sk. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1: 1000000 (3rd Generation). Baltiiskaya Series. Sheet Q_37-Arkhangel’sk. Explanatory Note), St. Peterburg Kartograficheskaya Fabrika VSEGEI, St. Petersburg, 2012.Google Scholar
  20. Groves, D.I., Goldfarb, R.J., Robert, F., and Hart, C.J.R., Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance, Econ. Geol., 2003, vol. 98, pp. 1–29.Google Scholar
  21. Imandra-Varzugskaya zona karelid (geologiya, geokhimiya, istoriya razvitiya) (Imandra–Varzuga Zone of Karelides (Geology. Geochemistry, History of Evolution), Gorbunov, G.I, Ed., Nauka: Leningrad, 1982.Google Scholar
  22. Jensen, L.S., A new cation plot for classifying subalkalic volcanic rocks, Ontario Div. Mines. Misc., 1976, Pap. 66.Google Scholar
  23. Kol’tsov, A.B., Metasomatic Processes at the gold deposits in metaterrigenous complexes, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Sankt-Peterburg: SPbGU, 1996.Google Scholar
  24. Kozlov, M.T., Razryvnaya tektonika severo-vostochnoi chasti Baltiiskogo shchita (Fault tectonics of the Northeasten Baltic Shield), Leningrad: Nauka, 1979.Google Scholar
  25. Kretschmar, U. and Scott, S.D., Phase relations involving arsenopyrite in the system Fe–As–S and their application, Can. Mineral., 1976, vol. 14, pp. 364–386.Google Scholar
  26. Krogh, T.E., A low-contamination method for hydrothermal dissolution of zircon and extraction of U and Pb for isotopic age determinations, Geochim. Cosmohim. Acta, 1973, vol. 37, pp. 485–494.CrossRefGoogle Scholar
  27. Kuleshevich, L.V., Rybozero gold deposit in the South Vygozero greenstone belt (eastern Karelia), Geol. Polezn. Iskop. Karelii, 2013, vol. 16, pp. 89–101.Google Scholar
  28. Ludwig, K.R., PbDat for ms_dos. version 1.21, U.S. Geol. Surv. Open File Rept., 1991, vol. 8-542.Google Scholar
  29. Ludwig, K.R., Isoplot/ex-a geochronological toolkit for Microsoft Excel, version 2.05, Berkeley Geochronol. Center Sp. Publ., 1999, no. 1a.Google Scholar
  30. McCuaig, T.C. and Kerrich, R., P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematic, Ore Geol Rev., 1998, vol. 12, pp. 381–453.CrossRefGoogle Scholar
  31. Mineral’no-syr’evaya baza Respubliki Kareliya. Kn. 1 (Mineral–Raw Base of Karelia Republic) Mikhailov, V. P. and Aminov, V. N, Eds., Kareliya: Petrozavodsk, 2005, vol. 1.Google Scholar
  32. Neumayr, P., Hagemann, S.G., and Couture, J.-F., Structural setting textures and timing of hydrothermal vein systems in the Vald’Or camp, Abitibi, Canada: implications for the evolution of transcrustal, second- and higher-order fault zones and gold mineralization, Can. J. Earth Sci., 2000, vol. 37, pp. 95–115.CrossRefGoogle Scholar
  33. Neumayr, P. and Hagemann, S.G., Hydrothermal fluid evolution within the Cadillac tectonic zone, Abitibi greenstone belt, Canada: relationship to auriferous fluids in adjacent second- and third-order shear zones, Econ. Geol., 2002, vol. 97, pp. 1203–1225.CrossRefGoogle Scholar
  34. Nurmi, P.A., Geological setting, history of discovery, and exploration economics of Precambrian gold occurrences in Finland, J. Geochem. Explor., 1991, vol. 39, pp. 273–287.CrossRefGoogle Scholar
  35. Ojala, V.J., (ed.). Geological Survey of Finland. Special Paper, part 44, Espoo, 2007.Google Scholar
  36. Otto, A., Dziggel, A., Kisters, A.F.M., and Meyer, F.M., The New Consort gold mine, Barberton greenstone belt, South Africa: orogenic gold mineralization in a condensed metamorphic profile, Mineral. Deposita, 2007, vol. 42, pp. 715–735.CrossRefGoogle Scholar
  37. Poutiainen, M. and Partamies, S., Fluid inclusion characteristics of auriferous quartz veins in Archean and Paleoproterozoic greenstone belts of eastern and southern Finland, Econ. Geol., 2003, vol. 98, pp. 1355–1369.CrossRefGoogle Scholar
  38. Pozhilenko, V.I., Gavrilenko, B.V., Zhirov, D.V., and Zhabin, S.V., Geologiya rudnykh raionov Murmanskoi oblasti (Geology of Ore Districts of the Murmansk Area), KNTs RAN, 2002.Google Scholar
  39. Simard, M., Gaboury, D., Daigneault, R., and Mercier-Langevin, P., Multistage gold mineralization at the Lapa Mine, Abitibi subprovince: insights into auriferous hydrothermal and metasomatic processes in the Cadillac-Larder Lake fault zone, Mineral. Deposita, 2013, vol. 48, pp. 883–905.CrossRefGoogle Scholar
  40. Smol’kin, V.F. Metamorphism of basite–hyperbasite intrusions of the Southern Varzuga Fault (Imandra-Varzuga Zone), in Metamorfizm i metamorfogennoe rudoobrazovanie rannego dokembriya (Metamorphism and Metamorphogenic Ore Formation of the Early Precambrian), Apatity: Kol’sk. Fil. AN SSSR, 1984, pp. 78–85.Google Scholar
  41. Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.CrossRefGoogle Scholar
  42. Steiger, R.H. and Jager, E., Subcommission on geochronology: convention on the use of decay constants in geoand cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, no. 3, pp. 359–362.CrossRefGoogle Scholar
  43. Timmerman, M.J. and Daly, J.S., Sm-Nd evidence for Late Archaean crust formation in the Lapland–Kola mobile belt, Kola Peninsula, Russia and Norway, Precambrian Res., 1995, vol. 72, no. 12, pp. 97–107.CrossRefGoogle Scholar
  44. Vrevsky, A.B., Matrenichev, V.A., and Ruzh’eva, M.S., Petrology of komatiites from the Baltic Shield and isotope geochemical evolution of their mantle sources, Petrology, 2003, vol. 1, no. 6, pp. 532–561.Google Scholar
  45. Witt, W.K. and Vanderhor, F., Diversity within a unified model for Archaean gold mineralization in the Yilgarn craton of western Australia: an overview of the late-orogenic, structurally-controlled gold deposits, Ore Geol. Rev., 1998, vol. 13, pp. 29–64.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Kalinin
    • 1
  • O. V. Kazanov
    • 2
  • N. M. Kudryashov
    • 1
  • G. F. Bakaev
    • 2
  • S. V. Petrov
    • 3
  • D. V. Elizarov
    • 1
  • L. V. Lyalina
    • 1
  1. 1.Geological Institute, Kola Science CenterRussian Academy of SciencesApatityRussia
  2. 2.Central Kola ExpeditionMonchegorskRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations