Advertisement

Geology of Ore Deposits

, Volume 57, Issue 8, pp 721–731 | Cite as

Mendigite, Mn2Mn2MnCa(Si3O9)2, a new mineral species of the bustamite group from the Eifel volcanic region, Germany

  • N. V. Chukanov
  • S. M. Aksenov
  • R. K. Rastsvetaeva
  • K. V. Van
  • D. I. Belakovskiy
  • I. V. Pekov
  • V. V. Gurzhiy
  • W. Schüller
  • B. Ternes
Article

Abstract

A new mineral, mendigite (IMA no. 2014-007), isostructural with bustamite, has been found in the In den Dellen pumice quarry near Mendig, Laacher Lake area, Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Associated minerals are sanidine, nosean, rhodonite, tephroite, magnetite, and a pyrochlore-group mineral. Mendigite occurs as clusters of long-prismatic crystals (up to 0.1 × 0.2 × 2.5 mm in size) in cavities within sanidinite. The color is dark brown with a brown streak. Perfect cleavage is parallel to (001). D calc = 3.56 g/cm3. The IR spectrum shows the absence of H2O and OH groups. Mendigite is biaxial (–), α = 1.722 (calc), β = 1.782(5), γ = 1.796(5), 2V meas = 50(10)°. The chemical composition (electron microprobe, mean of 4 point analyses, the Mn2+/Mn3+ ratio determined from structural data and charge-balance constraints) is as follows (wt %): 0.36 MgO, 10.78 CaO, 37.47 MnO, 2.91 Mn2O3, 4.42 Fe2O3, 1.08 Al2O3, 43.80 SiO2, total 100.82. The empirical formula is Mn2.00(Mn1.33Ca0.67) (Mn0.50 2+ Mn0.28 3+ Fe0.15 3+ Mg0.07)(Ca0.80 (Mn0.20 2+)(Si5.57 Fe0.27 3+ Al0.16O18). The idealized formula is Mn2Mn2MnCa(Si3O9)2. The crystal structure has been refined for a single crystal. Mendigite is triclinic, space group \(P\bar 1\); the unit-cell parameters are a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å, α = 79.58(1)°, β = 62.62(1)°, γ = 76.47(1)°; V = 359.29(4) Å3, Z = 1. The strongest reflections on the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are: 3.72 (32) (020), 3.40 (20) (002, 021), 3.199 (25) (012), 3.000 (26), (\(01\bar 2\), \(1\bar 20\)), 2.885 (100) (221, \(2\bar 11\), \(1\bar 21\)), 2.691 (21) (222, \(2\bar 10\)), 2.397 (21) (\(02\bar 2\), \(21\bar 1\), 203, 031), 1.774 (37) (412, \(3\bar 21\)). The type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4420/1.

Keywords

Wollastonite Calcium Silicate Hydrate Tobermorite Oxygen Distance Perfect Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrianov, V.I., Development of the system of crystallographic programs RENTGEN for the computers NORD, SM-4 and US, Kristallografiya, 1987, vol. 32, pp. 228–231.Google Scholar
  2. Angel, R.J. Structural variation in wollastonite and bustamite, Mineral. Mag., 1985, vol. 49, pp. 37–48.CrossRefGoogle Scholar
  3. Angel, R.J., Transformation mechanisms between singlechain silicates, Am. Mineral., 1986, vol. 71, pp. 1441–1454.Google Scholar
  4. Brown, I.D. and Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr., 1985, vol. 41, pp. 244–247.CrossRefGoogle Scholar
  5. Burnham, C.W., Ferrobustamite: the crystal structures of two Ca, Fe bustamite-type pyroxenoids: correction, Z. Kristallogr., 1975, vol. 142, pp. 450–452.Google Scholar
  6. Chukanov, N.V., Krivovichev, S.V., Pakhomova, A.S., Pekov, I.V., Schäfer, Ch., Vigasina, M.F., and Van, K.V., Laachite (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconoliterelated mineral from the Eifel volcanic region, Germany, Eur. J. Mineral., 2014, vol. 26, pp. 103–111.Google Scholar
  7. CrysAlisPro, Agilent Technologies, version 1.171.36.20 (ed. 27-06-2012).Google Scholar
  8. Deer, W.A., Howie, R.A., and Zussman, J., Rock-Forming Minerals. Vol 2A: Single-Chain Silicates, London: Longman, 1978.Google Scholar
  9. Grangeon, S., Claret, F., Lerouge, C., Warmont, F., Sato, T., Anraku, S., Numako, C., Linard Y., and Lan-son, B., On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite, Cem. Concr. Res., 2013, vol. 52., pp. 31–37.CrossRefGoogle Scholar
  10. Harada, K., Sekino, H., Nagashima, K., Watanabe, T., and Momoi H., High-iron bustamite and fluorapatite from the Broken Hill mine, New South Wales, Australia, Mineral. Mag., 1974, vol. 39, pp. 601–604.CrossRefGoogle Scholar
  11. Mason, B., Compositional limits of wollastonite and bustamite., Am. Mineral., 1975, vol. 60, pp. 209–212.Google Scholar
  12. Mineraly. Sparovochnik (Minerals. Reference Book) Chukhrov, F.V. and Smolyaninova, N.N., Eds. Moscow: Nauka, 1981, vol. III, pt. 2.Google Scholar
  13. Ohashi, Y. and Finger, L.W., The role of octahedral cations in pyroxenoid crystal chemistry. I. Bustamite, wollastonite, and pectolite–schizolite–serandite series, Am. Mineral., 1978, vol. 63, pp. 274–288.Google Scholar
  14. Palatinus, L. and Chapuis G. SUPERFLIP–a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Cryst., 2007, vol. 40, pp. 786–790.CrossRefGoogle Scholar
  15. Peacor, D.R. and Buerger, M.J., Determination and refinement of the crystal structure of bustamite, CaMnSi2O6, Z. Kristallogr., 1962, vol. 117, pp. 331–343.CrossRefGoogle Scholar
  16. Peacor, D. R. and Prewitt, M.J., Comparison of the crystal structures of bustamite and wollastonite, Am. Mineral., 1963, vol. 48. pp. 588–596.Google Scholar
  17. Petricek, V., Duek, M., and Palatinus, L., Jana 2006. Structure Determination Software Programs, Praha, Institute of Physics, 2006.Google Scholar
  18. Shimazaki, H. and Yamanaka, T., Iron-wollastonite from skarns and its stability relation in the CaSiO3–CaFeSi2O6 join, Geochem. J., 1973, vol. 7, pp. 67–79.CrossRefGoogle Scholar
  19. Yamanaka, T., Sadanaga, R., Takeuchi, Y., Structural variation in the ferrobustamite solid solution, Am. Mineral., 1977, vol. 62, pp. 1216–1224.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. V. Chukanov
    • 1
  • S. M. Aksenov
    • 2
  • R. K. Rastsvetaeva
    • 2
  • K. V. Van
    • 3
  • D. I. Belakovskiy
    • 4
  • I. V. Pekov
    • 5
  • V. V. Gurzhiy
    • 6
  • W. Schüller
    • 7
  • B. Ternes
    • 8
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  4. 4.Fersman Mineralogical MuseumRussian Academy of SciencesMoscowRussia
  5. 5.Faculty of GeologyMoscow State UniversityMoscowRussia
  6. 6.Faculty of GeologySt. Petersburg State UniversitySt PetersburgRussia
  7. 7.Im Straussenpesch 22AdenauGermany
  8. 8.Bahnhofstrasse 45MayenGermany

Personalised recommendations