Geology of Ore Deposits

, Volume 57, Issue 3, pp 197–212 | Cite as

Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis

  • N. P. Safina
  • V. V. Maslennikov
  • S. P. Maslennikova
  • V. A. Kotlyarov
  • L. V. Danyushevsky
  • R. R. Large
  • I. A. Blinov


The results of investigation of metamorphosed sulfide-magnetite ores from the Mauk deposit located within the Main Ural Fault at the junction of Tagil and Magnitogorsk massive sulfide zones are discussed. The ore-hosting sequence comprises metamorphic rocks formed from basalt, carbonaceous and carbonaceous-cherty siltstone, and lenticular serpentinized ultramafic bodies. The ores of the deposit are represented by banded varieties and less frequent breccia. The clastic origin of the banded ore is indicated by load casts at the bottom of sulfide beds, alternation of sulfide and barren beds, and the truncation of the growth zones of pyrite crystals. Pyrite, pyrrhotite, chalcopyrite, sphalerite, and magnetite are the major minerals of the banded ores. The internal structure of the listed minerals testifies to the deep metamorphic recrystallization of primary hydrothermal-sedimentary ores accompanied with deformation. Cubanite, pyrrhotite, mackinawite, greigite, and gold are enclosed in metacrysts of pyrite, magnetite, and chalcopyrite. The accessory minerals of the Pb-Bi-Te, Bi-Te, and Ag-Te systems as well as uraninite have been found at the Mauk deposit for the first time. Magnetite predominantly replaces pyrite and less frequently chalcopyrite, pyrrhotite, and gangue minerals. It was established that the major carriers of As and Co are crystals of metamorphic pyrite. Chalcopyrite is the major carrier of Zn, Sn, Te, Pb, Bi, and Ag. Admixture of Fe and Cu is typical of sphalerite, and Se and Ni are characteristic of pyrrhotite. Ti, V, Mn, Sb, As, Ba, and U are concentrated in magnetite. The banded ores of the Mauk deposit are suggested as having been transformed in several stages: diagenesis, anadiagenesis, epidiagenesis (t < 300°C), and amphibolite facies metamorphism (t > 500°C).


Magnetite Pyrite Massive Sulfide Molybdenite Gangue Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afanas’eva, M.A., Bardina, N.Yu., Bogatikov, O.A., et al., Petrografiya i petrologiya magmaticheskikh, metamorficheskikh i metasomaticheskikh gornykh porod (Petrography and Petrology of Magmatic, Metamorphic, and Metasomatic Rocks), Moscow: Logos, 2001.Google Scholar
  2. Afifi, A.M., Kelly, W.S., and Essene, E.J., Phase relations among tellurides, sulfides, and oxides. termodinamical data and calculated equilibria, Econ. Geol., 1988, vol. 83, pp. 377–394.CrossRefGoogle Scholar
  3. Ayupova, N.R., Tseluiko, A.S., and Maslennikov, V.V., Mineralogy of stratified sulfide ores of the Yubeleiny Cu-Zn massive sulfide deposit, South Urals, in Geolgiya, poleznye iskopaemye i problem geoecologii Bashkortostana, Urala i soprelel’nnykh territorii: IX Mezhregional’nya nauchno-practich. konf. (Geology, Minerals, and Geoecological Problems of Bashkortostan, Urals, and Adjacent Areas: IX. Interregion. Conf.), Ufa: DezainPoligrafServis, 2012, pp. 14–17.Google Scholar
  4. Belogub, E.V., Moloshag, V.P., Novoselov, K.A., and Kotlyarov, V.A., Native bismuth, tsumoite, and Pb-bearing tsumoite from the Tarnyer Cu-Zn massive sulfide deposit, Northern Urals, Zap. Ross. Mineral. O-va, 2010, vol. 139, no. 6, pp. 82–93.Google Scholar
  5. Belogub, E.V., Shcherbakova, E.P., and Novoselov, K.A., Cobalt at the Letnee massive sulfide deposit, South Urals, in Metallogeniya drevnikh i sovremennykh okeanov-2004 (Metallogeny of Recent and Ancient Oceans), Miass: Institute of Mineralogy, Ural Branch, Russian Academy of Sciences, 2004, vol. 1, pp. 268–273.Google Scholar
  6. Betekhtin, A.G., Genkin, A.D., Filimonova, A.A., and Shadlun, T.N., Tekstury i struktury rud (Ore Structures and Textures), Moscow: Gosgeoltekhizdat, 1958.Google Scholar
  7. Bogush, I.A. and Burtsev, A.A., Ontogenicheskii atlas morfogeneticheskikh mikrostruktur kolchedannykh rud (Onthogenic Atlas of Morphogenetic Microtextures of Massive Sulfide Ores), Rostov-on-Don: SKNTs VSh, 2004.Google Scholar
  8. Bortnikov, N.S., Kramer, K., Genkin, A.D., et al., Paragenesis of gold and silver tellurides at the Florencia gold deposit, Cuba, Int. Geol. Rev, 1988, vol. 30, pp. 294–306.CrossRefGoogle Scholar
  9. Chvileva T.N., Bezsmertnaya M.S., Spiridonov E.M. et al., Spravochnik-opredelitel’ rudnykh mineralov v otrazhennom svete, (Reference-Book for Determination of Ore Minerals in Reflected Light), Moscow: Nedra, 1988.Google Scholar
  10. Cook, N.J., Ciobanu, C.L., Stanley, et al. Compositional data for Bi-Sb-Tellurosulfides, Can. Mineral., 2007a, vol. 45, pp. 417–435.CrossRefGoogle Scholar
  11. Cook, N.J., Ciobanu, C.L., Wagner, T., and Stanley, J., Minerals of the system Bi-Te-Se-S related to the tetradymite archetype: review of classification and compositional variation, Can. Mineral., 2007b, vol. 45, pp. 665–708.CrossRefGoogle Scholar
  12. Cook, N.J., Halls, C., and Boyle, A.P., Deformation and metamorphism of massive sulphides at sulitjelma, norway, Mineral Mag., 1993, vol. 57, pp. 67–82.CrossRefGoogle Scholar
  13. Craig, J.R. and Vaughan, D.J. Ore Microscopy and Ore Petrography, New York: Wiley, 1981.Google Scholar
  14. Danyushevsky, L.V., Robinson, R., Gilbert, S., et al., Routine quantitative multielement analysis of sulfide minerals by laser ablation icp-ms: standard development and consideration of matrix effects, Geochim. Explor. Environm. Anal., 2011, vol. 11, pp. 51–60.CrossRefGoogle Scholar
  15. De Roo, J.A. and Van Staal, C.R., Sulfide remobilization and sulfide breccias in the Heath Steele and Brunswick deposits, Baturst mining camp, New Brunswick, Econ. Geol. Monogr., 2003, vol. 11, pp. 479–496.Google Scholar
  16. Doyle, M.G. and Allen, R.L., Subsea-floor replacement in volcanic-hosted massive sulfide deposits, Ore Geol. Rev., 2003, vol. 23, pp. 183–222.CrossRefGoogle Scholar
  17. Eliseev, N.A., Metamorfizm (Metamorphism), Moscow: Nedra, 1963.Google Scholar
  18. Eremin, N.I., Dergachev, A.L., Sergeeva, N.E., and Pozdnyakova, N.V., Types of volcanic-hosted massive sulfide deposits, Geol. Ore Deposits, 2000, vol. 42, no. 2, pp. 160–171.Google Scholar
  19. Grabovskii, M.A. and Zherdenko, O.N., Examination of ore minerals using magnetic powder method, Geol. Rudn. Mestorozhd., 1963, vol. 5,no. 1, pp. 99–104.Google Scholar
  20. Gzogyan, S.R. and Chanturiya, E.L., Thermal effect on iron sulfides and oxides, Gorn. Inf.-Anal. Bull., 2010, no. 5, pp. 63–69.Google Scholar
  21. Horng, C.S. and Roberts, A.P., Authigenic or detrital origin of pyrrhotite in sediments?: resolving a paleomagnetic conundrum, Earth Planet. Sci. Lett., 2006, vol. 241, pp. 750–762.CrossRefGoogle Scholar
  22. Ivanov, S.N., Examination of growth zones of pyrite grains at massive sulfide deposits of the Urals, Zap. Vses. Mineral. O-va, 1950, no. 2, pp. 113–126.Google Scholar
  23. Kontar’, E.S. and Libarova, L.E., Metallogeniya medi, tsinka i svintsa na Urale (Metallogeny of Copper, Zinc and Lead in the Urals), Yekaterinburg: Uralgeolkom, 1997.Google Scholar
  24. Koroteev, V.A. and Sazonov, V.N. Geodynamika, rudogenez, prognoz (Geodynamics, Ore Genesis, Prediction), Yekaterinburg: IGG UB RAS, 2005.Google Scholar
  25. Lianxing, Gu. and Vokes, F., Intergrowths of hexagonal and monoclinic pyrrhotites in some sulphide ores from deposits from Norway, Mineral. Mag., 1996, vol. 60, pp. 303–316.CrossRefGoogle Scholar
  26. Maslennikov, V.V., Litogenez i rudoobrazovanie (Lithogenesis and Ore Formation), Miass: Institute of Mineralogy, Ural Branch, Russian Academy of Sciencens, 2006.Google Scholar
  27. Maslennikov, V.V., Sedimentogenez, gal’miroliz i ekologiya kolchedannykh paleogidrotermal’nykh polei (na primere Yuzhnogo Urala) (Sedimentation, Halmyrolysis, and Ecology of Massive Sulfide Paleohydrothermal Fields: Case Study of South Urals), Miass: Geotur, 1999.Google Scholar
  28. Maslennikov, V.V., Ayupova, N.R., Herrington, R.J., Danyushevsky, L.V., and Large, R.R., Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals, Ore Geol. Rev., 2012, vol. 47, pp. 5–41.CrossRefGoogle Scholar
  29. Maslennikov, V.V., Maslennikova, S.P., Large, R.R., Danyushevsky, L.V., Herrington, R.J., and Stanley, C.J., Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia, Mineral. Petrol., Spec. issue: Ore deposits of the Urals, 2013, vol. 107, pp. 67–99.CrossRefGoogle Scholar
  30. Maslennikov, V.V., Morphogenetic types of massive sulfide deposits as indication of volcanic regimes, Litosfera, 2012, no. 5, pp. 96–113.Google Scholar
  31. Maslennikova, S.P. and Maslennikov, V.V., Sul’fidnye truby paleozoiskikh “chernykh kuril’shchikov” (Sulfide Chimneys of Paleozoic Black Smokers), Yekaterinburg-Miass: Ural Branch, Russian Academy of Sciences, 2007.Google Scholar
  32. Melekestseva, I.Yu., Geterogennye kobal’t-mednokolchedannye mestorozhdeniya v ul’tramafitakh paleoostrovoduzhnykh struktur (Heterogeneous Co-Cu Massive Sulfide Deposits Hosted in Ultramafics of Paleoarcs), Moscow: Nauka, 2007.Google Scholar
  33. Melekestseva, I.Yu., Zaykov, V.V., Nimis, P., et al., Co-bearing massive sulfide deposits associated with ultramafic-mafic rocks of the Main Ural Fault, Ore Geol. Rev., 2013, vol. 52, pp. 18–36.CrossRefGoogle Scholar
  34. Moloshag, V.P., Grabezhev, A.I., and Gulyaeva, T.Ya., Formation conditions of tellurides in ores of the Ural massive sulfide and porphyry copper-gold deposits, Zap. Ross. Mineral. O-va, 2002, no. 5, pp. 40–54.Google Scholar
  35. Moloshag, V.P., Grabezhev, A.I., Vikent’ev, I.V., and Gulyaeva, T.Ya., Ore-forming facies of massive sulfide deposits and sulfide ores of porphyry copper deposits of the Urals, Litosfera, 2004, no. 2, pp. 30–51.Google Scholar
  36. Moloshag, V.P., Telluride mineralization of the Ural massive sulfide desposits: new data, Litosfera, 2011, no. 6, pp. 91–102.Google Scholar
  37. Murzin, V.V., Varlamov, D.A., and Vikent’ev, I.V., Copper-Cobalt ores at the Pyshma-Klyuchevsky deposit in the Middle Urals: mineralogy of ores and metasomatic rocks, stages, and PT conditions of mineralization, Litosfera, 2011, no. 6, pp. 103–122.Google Scholar
  38. Petrov, G.V., Glushkov, A.N., Zubkov, A.I., and Ogorodnikov, G.N., Preliminary results of prospecting for copper within the Zapadnaya area, in Puti realizatsii neftegazovogo i rudnogo potentsiala Khanty-Mansiiskogo avtonomnogo okruga (Realization of Petrolium and Ore Potential of the Khanty-Mansi Okrug), 11th Sci. Conf., Khanty-Mansiisk, 2008, vo. 1, pp. 427–434.Google Scholar
  39. Popov, V.A., Prakticheskaya geneticheskaya mineralogiya (Practical Genetic Mineralogy), Yekaterinburg: Ural Branch, Russian Academy of Sciences, 2011.Google Scholar
  40. Prokin, V.A., Buslaev, F.P., Ismagilov, M.I. et al., Mednokolchedannye mestorozhdeniya Urala: Geologicheskoe stroenie, (Copper Massive Sulfide Deposits of the Urals: Geological Structure), Sverdlovsk: Ural Branch, Akad. Nauk SSSR, 1988.Google Scholar
  41. Prokin, V.A., Seravkin, I.B., Buslaev, F.P., et al., Mednokolchedannye mestorozhdeniya. Usloviya formirovaniya, (Copper Massive Sulfide Deposits of the Urals: Conditions of Formation), Yekaterinburg: Ural Branch, Russian Academy of Sciences, 1992.Google Scholar
  42. Pshenichnyi, G.N., Tekstury i struktury rud mestorozhdenii kolchedannoi formatsii Yuzhnogo Urala (Structures and Textures of Ores of Massive Sulfide Deposits of South Urals), Moscow: Nedra, 1984.Google Scholar
  43. Ramdohr, P., Die Erzmineralien und ihre Verwachsungen, Berlin: Akademie-Verlag, 1960.Google Scholar
  44. Roberts, A.P., Magnetic properties of sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 1995, no. 134, pp. 227–231.Google Scholar
  45. Safina, N.P. and Maslennikov, V.V., Rudoklastity kolchedannykh mestorozhdenii Yaman-Kasy i Saf’yanovskoe (Ural) (Ore Clasts of the Yaman-Kasy and Saf’yanovka deposit, Urals), Miass: Ural Branch, Russian Academy of Sciences, 2009.Google Scholar
  46. Safina, N.P. and Maslennikov, V.V., Composition and products of natural transformation of clastic sulfide sediments in orebodies of the Yaman-Kasy and Saf’yanovka deposist, Urals, Litosfera, 2007, no. 2, pp. 130–140.Google Scholar
  47. Shadlun, T.N. and Dobrovol’skaya, M.G., Structures and textures of ores as indications of ore deposition processes, Zap. Vsesos. Mineral. O-va, 1987.Google Scholar
  48. Shadlun, T.N. and Vikent’ev, I.V., New data on massive sulfide ores of the Kabanskoe field (based on the Ural deep borehole), Zap. Vseross. Mineral. O-va, 1992, no. 2, pp. 1–15.Google Scholar
  49. Shadlun, T.N., Some guides of metamorphism in massive sulfide ores at the III International deposit, Izv. Akad. Nauk SSSR, Ser. Geol., 1947, no. 5, pp. 139–145.Google Scholar
  50. Skripchenko, N.S., Gidrotermal’no-osadochnye sul’fidnye rudy bazal’toidnykh formatsii (Hydrothermal-Sedimentary Sulfide Ores of Basaltic Assemblages), Moscow: Nauka, 1972.Google Scholar
  51. Solomon, M. Groves, D.I., and Jaques A.L., The Geology and Origin of Australia’s Mineral Deposits (Oxford Monographs on Geology and Geophysics), New-York: Oxford Univ. Press, 1994.Google Scholar
  52. Tomkins, A.G., Pattison, D.R.M., and Frost, B.R., On the initiation of metamorphic sulfide anatexis, J. Petrol., 2007, vol. 48, no. 3, pp. 511–535.CrossRefGoogle Scholar
  53. Vikent’ev, I.V., Usloviya formirovaniya i metamorfizm kolchedannykh rud (Formation Conditions and Metamorphism of Massive Sulfide Ores), Moscow: Nauchnyi Mir, 2004.Google Scholar
  54. Yapaskurt, O.V., Stage analysis of sedimentation, Litosfera, 2008, no. 4, pp. 364–377.Google Scholar
  55. Yarosh, P.Ya. and Buslaev, F.P., Struktury rud i istoriya formirovaniya rudnykh agregatov Uzel’ginskogo mestorozhdeniya (Ore Textures and Formation History of Ore Segregations of the Uzelga Deposit), Sverdlovsk: UNTs AN SSSR, 1985.Google Scholar
  56. Yarosh, P.Ya., Diagenez i metamorfizm kolchedannykh rud na Urale (Diagenesis and Metamorphism of Massive Sulfide Ores in the Urals), Moscow: Nauka, 1973.Google Scholar
  57. Zaikov, V.V. and Maslennikov, V.V., Natural sulfide edifices at massive sulfide deposit of the Urals, Dokl. Akad. Nauk SSSR, 1987, vol. 293, no. 1, pp. 181–184.Google Scholar
  58. Zaikov, V.V., Maslennikov, V.V., Zaikova, E.V., and Kherrington, R., Rudno-formatsionnyi i rudno-fatsial’nyi analiz kolchedannykh mestorozhdenii Ural’skogo paleokeana (Ore-Formation and Ore-Facies Analysis of Massive Sulfide Deposits of the Ural Paleocean), Miass: Institute of Mineralogy, Ural Branch, Russian Academy of Sciences, 2001.Google Scholar
  59. Zlotnik-Khotkevich, A.G., Ferruginous and cherty-ferruginous sediments of massive sulfide deposits, in Kremnisto-zhelezistye otlozheniya kolchedanonosnykh raionov (Ferruginous and Cherty-Ferruginous Sediments of Massive Sulfide Districts), Sverdlovsk: Ural Branch, Akad. Nauk SSSR, 1989, pp. 42–52.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. P. Safina
    • 1
    • 2
  • V. V. Maslennikov
    • 1
    • 2
  • S. P. Maslennikova
    • 1
  • V. A. Kotlyarov
    • 1
  • L. V. Danyushevsky
    • 3
  • R. R. Large
    • 3
  • I. A. Blinov
    • 1
  1. 1.Institute of Mineralogy, Ural BranchRussian Academy of Sciences, Ilmeny Reservation, MiassChelyabinsk oblastRussia
  2. 2.South Ural State UniversityMiassRussia
  3. 3.University of TasmaniaSandy BayAustralia

Personalised recommendations