Geology of Ore Deposits

, Volume 56, Issue 5, pp 395–408 | Cite as

The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced processes

  • B. Cavalazzi
  • A. Agangi
  • R. Barbieri
  • F. Franchi
  • G. Gasparotto


This contribution is an updated review on sedimentary pyrite and on its role in well-consolidated research topics, such as the biogeochemical cycles and the studies on sediment-hosted ore deposit studies, as well as new frontiers of research, such as astrobiology. Textural and compositional information preserved in sedimentary pyrite from sediment-hosted ore deposits has contributed to elucidate their environment of forzmation. In particular, the content of redox-sensitive elements such as Ni, Co, Mo, and V has implications for defining the syn- and post-sedimentary conditions. In addition, the stable isotope compositions are useful indicators of the pathways of both biogenic and abiogenic pyrite formation. Despite the longstanding research on pyrite and the mechanism of its formation, there are still significant gaps in our knowledge. In this nonexhaustive review, we briefly touch on different current aspects of research on sedimentary pyrite, exemplifying how sedimentary pyrite remains relevant to geoscientists, and becomes more and more relevant in understanding some basic aspects of knowledge, such as the origin of life and the search for extraterrestrial life, as well as aspect of classical applied science, such as the implications for ore deposition.


Pyrite Ooids Sulfur Isotope Iron Sulfide Early Diagenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agangi, A., Hofmann, A., and Wohlgemuth-Ueberwasser, C.C., Pyrite zoning as a record of mineralization in the Ventersdorp Contact Reef, Witwatersrand Basin, South Africa, Econ. Geol., 2013, vol. 108, pp. 1243–1272.Google Scholar
  2. Agangi, A., Hofmann, A., Rollion-Bard, C., Marin-Carbonne, J., Cavalazzi, B., Large, R., and Meffre, S., Gold accumulation in the Archaean Witwatersrand Basin, South Africa—evidence from concentrically laminated pyrite, Earth Sci. Rev., (submitted).Google Scholar
  3. Allard, T., Menguy, N., Salomon, J., Calligaro, T., Weber, T., Calas G., and Benedetti, M.F., Revealing forms of iron in riverborne material from major tropical rivers of the Amazon Basin (Brazil), Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 3079–3094.Google Scholar
  4. Allen, E.T., Crenshaw, J.L., Johnson, J., and Larsen, E.S., The mineral sulphides of iron, Am. J. Sci., 1912, vol. 33, pp. 169–236.Google Scholar
  5. Allen, R.L., Weihed, P., Blandell, D., Crawford, T., Davidson, G., et al., Global comparisons of volcanic-associated massive sulphide districts, Geol. Soc. Spec. Publ., 2002, vol. 204, pp. 13–37.Google Scholar
  6. Aller, R.C., Mackin, J.E., and Cox, R.T., Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones, Cont. Shelf Res., 1986, vol. 6, pp. 263–289.Google Scholar
  7. Amils, R., González-Toril, E., Fernández-Remolar, D.C., Felipe Gómez, F., Aguilera, A., et al., Extreme environments as Mars terrestrial analogs: The Rio Tinto case, Planet. Space Sci., 2007, vol. 55, pp. 370–381.Google Scholar
  8. Amils, R., Fernández-Remolar, D., Gómez, F., González-Toril, E., Rodríguez, N., Briones, C., Prieto-Ballesteros, O., Sanz, J.L., Díaz, E., and Stevens, T.O., Subsurface geomicrobiology of the Iberian Pyritic Belt, in Microbiology of Extreme Soils, Soil Biology, Dion, P. and Shekhar Nautiyal, C., Eds., Berlin, Germany: Springer, 2008, vol. 13, pp. 205–223.Google Scholar
  9. Bailey, J.V., Raub, T.D., Meckler, A.N., Harrison, B.K., Raub, T.M.D., et al., Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2010, vol. 285, pp. 131–0142.Google Scholar
  10. Bakewell, R., An Introduction to Geology (2nd ed), 1815, Harding, London.Google Scholar
  11. Barrie, C.D., Boyle, A.P., Cook, N.J., and Prior, D.J., Pyrite deformation textures in the massive sulfide ore deposits-of the Norwegian Caledonides, Tectonophysics, 2010, vol. 483, pp. 269–286.Google Scholar
  12. Barton, E.S. and Hallbauer, D.K., Trace-element and U-Pb isotope compositions of pyrite types in the Proterozoic Black Reef, Transvaal Sequence, South Africa: Implications on genesis and age, Chem. Geol., 1996, vol. 133, pp. 173–199.Google Scholar
  13. Benning, L.G., Wilkin, R.T., and Barbes, H.L., Reaction pathways in the Fe-S system below 100°C, Chem. Geol., 2000, vol. 167, pp. 25–51.Google Scholar
  14. Berner, R.A., Modeling atmospheric O2 over Phanerozoic time, Geochim. Cosmochim. Acta, 2001, vol. 65, pp. 685–694.Google Scholar
  15. Berner, R.A. and Raiswell, R., C/S method for distinguishing freshwater from marine sedimentary rocks, Geology, 1984, vol. 12, pp. 365–368.Google Scholar
  16. Binda, P.L., Koopman, H.T., and Schwann, P.L., Sulphide ooids from the proterozoic Siyeh Formation of Alberta, Canada, Miner. Deposita, 1985, vol. 20, pp. 43–49.Google Scholar
  17. Binda, P.L. and Simpson, E.L., Petrography of sulphide-coated grains from the Ordovician Winnipeg Formation, Saskatchewan, Canada, Eur. J. Mineral., 1989, vol. 1, pp. 439–453.Google Scholar
  18. Bower, J., Savage, K.S., Weinman, B., Barnett, M.O., Hamilton, W.P., and Harper, W.F., Immobilization of mercury by pyrite (FeS2), Environ. Pollut., 2008, vol. 156, pp. 504–514.Google Scholar
  19. Bragg, W.L., The analysis of crystals by the X-ray spectrometer, Proc. R. Soc. Lond., 1914, vol. A89, p. 468.Google Scholar
  20. Brown, D. and McClay, K.R., Deformation textures in pyrite fromthe Vangorda Pb-Zn-Ag deposit, Yukon, Canada, Miner. Mag., 1993, vol. 57, pp. 55–66.Google Scholar
  21. Burns, R.G., Ferric sulfates on Mars. Journal of Geophysical Research, Solid Earth Planets, 1987, vol. 92, pp. E570–E574.Google Scholar
  22. Canfield, D.E. and Raiswell, R., Pyrite formation and Fossil preservation, in Taphonomy: Releasing the Data Locked in the Fossil Record, Allison, P.A. and Briggs, D.E., Eds., New York: Plenum Press, 1991.Google Scholar
  23. Canfield, D.E. and Thamdrup, B., The production of S-34-depleted sulfide during bacterial disproportionation of elemental sulfur, Science, 1994, vol. 266, pp. 1973–1975.Google Scholar
  24. Canfield, D.E., Biogeochemistry of sulfur isotopes, Reviews in Mineralogy and Geochemistry, 2001, vol. 43, pp. 607–636.Google Scholar
  25. Canfield, D.E., The early history of atmospheric oxygen: Homage to Robert M. Garrels, Annu. Revi. Earth Pl. Sc., 2005, vol. 33, pp. 1–36.Google Scholar
  26. Canfield, D.E. and Raiswell, R., The evolution of the sulfur cycle, Am. J. Sci., 1999, vol. 299, pp. 697–723.Google Scholar
  27. Cavalazzi, B., Microbially induced fabrics from a Lower Miocene cold seep ecosystem (western Sicily, Italy), Grzybowski Foundation Special Publication, 2007, vol. 12, pp. 7–13.Google Scholar
  28. Cavalazzi, B., Barbieri, R., Cady, S.L., George, A.D., Gennaro, S., et al., Iron-framboids in the hydrocarbon-related Middle Devonian Hollard Mound of the Anti-Atlas mountain range in Morocco: Evidence of potential microbial biosignatures, Sed. Geol., 2012, vols. 263–264, pp. 183–193.Google Scholar
  29. Chen, D.F., Liu, Q., Zhang, Z., Cathles, L.M. III, and Roberts, H.H., Biogenic fabrics in seep carbonates from an active gas vent site in Green Canyon Block 238, Gulf of Mexico, Mar. Petrol. Geol., 2007, vol. 24, pp. 313–320.Google Scholar
  30. Christensen, P.R., Wyatt, M.B., Glotch, T.D., Rogers, A.D., Anwar, S., et al., Mineralogy at Meridiani planum from the Mini-TES experiment on the opportunity rover, Science, 2004, vol. 306, pp. 1733–1739.Google Scholar
  31. Cody, G.D., Boctor, N.Z., Filley, T.R., Hazen, R.M., Scott, J.H., Sharma, A., and Yoder Jr., H.S., Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate, Science, 2000, vol. 289, pp. 1337–1340.Google Scholar
  32. Craig, J.R. and Vokes, F.M., The metamorphism of pyrite and pyritic ores—an overview, Mineral. Mag., 1993, vol. 57, pp. 3–18.Google Scholar
  33. Deditius, A.P., Utsunomiya, S., Reich, M., Kesler, S.E., Ewing, R.C., et al., Trace metal nanoparticles in pyrite, Ore Geol. Rev., 2011, vol. 42, pp. 32–46.Google Scholar
  34. Ebel, D.S., Sulfur in extraterrestrial bodies and the deep Earth, Rev. Mineral. Geochem., 2011, vol. 73, pp. 315–336.Google Scholar
  35. Edwards, K.J., Formation and degradation of seafloor hydrothermal sulfide deposits, Geol. S. Am. S, 2004, vol. 379, pp. 83–96.Google Scholar
  36. El Albani, A., Bengtson, S., Canfield, D., Bekker, A., and Macchiarelli, R., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago, Nature, 2010, vol. 466, pp. 100–104.Google Scholar
  37. El Aref, M.M., Strata-bound and stratiform iron sulfides, sulfur and galena in the Miocene evaporites, Ranga, Red Sea, Egypt, in Syngenesis and Epigenesis in the Formation of Mineral Deposits, Wauschkuhn, A., Kluth, C., Zimmer-mann, R.A., Eds., Heidelberg: Springer, 1984.Google Scholar
  38. Ellmer, K. and Höpfner, C., On the stoichiometry of the semiconductor pyrite (FeS2), Philos. Mag., 1997, vol. A75, pp. 1129–1151.Google Scholar
  39. Emerson, S.R. and Huested, S.S., Ocean anoxia and the concentrations of molybdenum and vanadium in seawater, Marine Chemistry, 1991, vol. 34, pp. 177–196.Google Scholar
  40. England, G.L., Rasmussen, B., Krapez, B., and Groves, D.I., Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen-deficient atmosphere or hydrothermal alteration?, Sedimentology, 2002, vol. 49, pp. 1133–1156.Google Scholar
  41. Fairén, A.G., Schulze-Makuch, D., Rodríguez, A.P., Fink, W., Davila, A.F., et al., Evidence for Amazonian acidic liquid water on Mars—A reinterpretation of MER mission results, Planet. Space Sci., 2009, vol. 57, pp. 276–287.Google Scholar
  42. Farquhar, J., Bao, H., and Thiemens, M., Atmospheric influence of Earth’s earliest sulfur cycle, Science, 2000, vol. 289, pp. 756–758.Google Scholar
  43. Farquhar, J. and Wing, B.A., Multiple sulfur isotopes and the evolution of the atmosphere, Earth Planet. Sci. Let., 2003, vol. 213, pp. 1–13.Google Scholar
  44. Farquhar, J., Wu, N., Canfield, D.E., and Oduro, H., Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits, Econ. Geol., 2011, vol. 105, pp. 509–533.Google Scholar
  45. Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., and Knoll, A.H., The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 149–167.Google Scholar
  46. Fitz, D., Reiner, H., and Rode, B.M., Chemical evolution toward the origin of life, Pure Appl. Chem., 2007, vol. 79, pp. 2101–2117.Google Scholar
  47. Freitag, K., Boyle, A.P., Nelson, E., Hitzman, M., Churchill, J., and Lopex-Pedrosa, M., The use of electron backscatter diffraction and orientationcontrast imaging as tools for sulphide textural studies: example from the Greens Creek deposit (Alaska), Miner. Deposita, 2004, vol. 39, pp. 103–113.Google Scholar
  48. Frimmel, H.E., Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa, Earth-Sci. Rev., 2005, vol. 70, pp. 1–46.Google Scholar
  49. Frizzo, P., Rampazzo, G., and Molinaroli, E., Authigenic iron sulphides in Recent sediments of the Venice Lagoon (northern Italy), Eur. J. Mineral., 1991, vol. 3, pp. 603–612.Google Scholar
  50. García-Guinea, J., Martínez-Frías, J., González-Martín, R., and Zamora, L., Framboidal pyrites in antique books, Nature, 1997, vol. 388, pp. 631–631.Google Scholar
  51. García-Guinea, J., Martínez-Frías, J., and Harffy, M., Cell-hosted pyrite framboids in fossil woods, Naturwissenschaften, 1998, vol. 85, pp. 1–5.Google Scholar
  52. Garty, J., Giele, C., and Kumberlein, W.E., On the occurrence of pyrite in a lichen-like inclusion in Eocene amber (Baltic), Palaeogeogr. Palaeoclimatol. Palaeoecol., 1982, vol. 39, pp. 139–147.Google Scholar
  53. Goldhaber, M.B., Sulfur-rich sediments, in Treatise on Geochemistry, Mackenzie, F.T., Ed., Sediments, Diagenesis, and Sedimentary Rocks, Amsterdam: Elsevier, 2003, vol. 7.Google Scholar
  54. Gong, Y.M., Shi, G.R., Weldon, E.A., Du, Y.S., and Xu, R., Pyrite framboids interpreted as microbial colonies within the Permian Zoophycos spreiten from southeastern Australia, Geol. Mag., 2008, vol. 145, pp. 95–103.Google Scholar
  55. Grimes, S.T., Brock, F., Rickard, D., Davies, K.L., Edwards, D., et al., Understanding fossilization: experimental pyritization of plants, Geology, 2001, vol. 29, pp. 123–126.Google Scholar
  56. Grimes, S.T., Davies, K.L., Butler, I.B., Brock, F., Edwards, D., et al., Fossil plants from the Eocene London Clay: the use of pyrite textures to determine the mechanism of pyritization, J. Geol. Soc. Lond., 2002, vol. 159, pp. 493–501.Google Scholar
  57. Guy, B.M., Beukes, N.J., and Gutzmer, J., Paleoenvironmental controls the texture and chemical composition of pyrite from nonconglomeratic sedimentary rocks of the Mesoarchaean Witwatersrand Supergroup, South Africa, S. Afr. J. Geol., 2010, vol. 113, pp. 195–228.Google Scholar
  58. Habashi, F., Pyrite. History, Chemistry, and Metallurgy, 2012, Métallurgie Extractive Québec, Quebec City, Canada, available at: Google Scholar
  59. Hatchett, C., Analysis of a triple sulphured of lead, antimony and copper, from Cornwall, Philos. Trans., 1804, vol. 94, pp. 63–69.Google Scholar
  60. Hofmann, A., Bekker, A., Rouxel, O., Rumble, D., and Master, S., Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 436–445.Google Scholar
  61. Holland, H.D., The Chemical Evolution of the Atmosphere and Oceans, New York: Princeton University Press, 1984.Google Scholar
  62. Hu, J., Yanning Zhang, Y., Law, M., and Wu, R., First-principles studies of the electronic properties of native and substitutional anionic defects in bulk iron pyrite, Phys. Rev., 2012, vol. B85, pp. 085–203.Google Scholar
  63. Hudson, J.D., Pyrite in ammonite-bearing shales from the Jurassic of England and Germany, Sedimentology, 1982, vol. 29, pp. 639–667.Google Scholar
  64. Huerta-Diaz, M.A. and Morse, J.W., Pyritization of trace metals in anoxic marine sediments, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 2681–2702.Google Scholar
  65. Iberall-Robbins, E. and Iberall, A.S., Mineral remains of early life on Earth? On Mars?, Geomicrobiol. J., 1991, vol. 9, pp. 51–66.Google Scholar
  66. Johnson, D.B. and Hallberg, K.B., Acid mine drainage remediation options: a review, Sci. Total Environ., 2005, vol. 338, pp. 3–14.Google Scholar
  67. Johnston, D.T., Roden, E.E., Welch, S.A., and Beard, B.L., Active microbial sulfur disproportionation in the Mesoproterozoic, Science, 2005, vol. 310, pp. 1477–1479.Google Scholar
  68. Johnston, D.T., Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle, Earth-Sci. Rev., 2011, vol. 106, pp. 161–183.Google Scholar
  69. Kammer, T.W. and Ausich, W.I., New cladid and flexible crinoids from the Mississippian (Tournaisian, Ivorian) of the England and Whales, Palaeontology, 2007, vol. 50, pp. 1039–1050.Google Scholar
  70. Kaplan, I.R. and Rittenberg, S.C., Microbiological fractionation of sulphur isotopes, J. Gen. Microbiol., 1964, vol. 34, pp. 195–212.Google Scholar
  71. Kohn, M.J., Riciputi, L.R., Stakes, D., and Orange, D.L., Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization?, Am. Mineral., 1998, vol. 83, pp. 1454–1468.Google Scholar
  72. Kullerud, G. and Yoder, H.S., Pyrite stability relations in the Fe-S system, Econ. Geol., 1959, vol. 54, pp. 533–572.Google Scholar
  73. Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., et al., Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits, Econ. Geol., 2009, vol. 104, pp. 635–668.Google Scholar
  74. Large R.R., Bull, S.W., and Maslennikov, V.V., A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits, Econ. Geol. and the Bulletin of the Society of Economic Geologists, 2011, vol. 106, no. 3, pp. 331–358.Google Scholar
  75. Lindgren, P., Parnell, J., Holm, N., and Broman, K., A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting, Geochem. T., 2011, vol. 12, p. 3.Google Scholar
  76. Liu, W. and Zhang, X.-L., Evidence for microbial dissolution of pyrite from the Lower Cambrian oolitic limestone, South China, Biogeosciences Discuss, 2011, vol. 8, pp. 2035–2056.Google Scholar
  77. Love, L.G., Microorganisms and the presence of syngenetic pyrite, Quarterly Journal, Geological Society, London, 1957, vol. 113, pp. 429–440.Google Scholar
  78. Love, L.G., Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, NorthWales, U.K., J. Sediment. Petrol., 1971, vol. 41, pp. 1038–1044.Google Scholar
  79. Lyons, T.W. and Gill, B.C., Ancient sulfur cycling and oxygenation of the early biosphere, Elements, 2010, vol. 6, pp. 93–99.Google Scholar
  80. Malcom, S.J., Early diagenesis of molybdenum in estuarine sediments, Mar. Chem., 1985, vol. 16, pp. 213–225.Google Scholar
  81. Marini, L., Moretti, R., and Accornero, M., Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas, Rev. Mineral. Geochem., 2011, vol. 73, pp. 423–492.Google Scholar
  82. Marin-Carbonne, J., Rollion-Bard, C., Bekker, A., Rouxel, O., Agangi, A., Cavalazzi, B., Wohlgemuth-Ueberwasser, C.C., Hofmann, A., and McKeegan, K.D., Coupled Fe and S isotope variations in pyrite nodules from Archean shales, Earth Plan. Sci. Lett., vol. 392, pp. 67–79.Google Scholar
  83. Massaad, M., Framboidal pyrite concretions, Mineral. Deposita, 1974, vol. 9, pp. 87–89.Google Scholar
  84. McLennan, S.M., Bell, J.F. III, Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R., Ghosh, A., Glotch, T.D., Grotzinger, J.P., Hahn, B., Herkenhoff, K.E., Hurowitz, J.A., Johnson, J.R., Johnson, S.S., Jolliff, B., Klingelhöfer, G., Knoll, A.H., Learner, Z., Malin, M.C., McSween Jr., H.-Y., Pocock, J., Ruff, S.W., Soderblom, L.A., Squyres, S.W., Tosca, N.J., Watters, W.A., Wyatt, M.B., and Yen, A., Provenance and diagenesis of the evaporate bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 95–121.Google Scholar
  85. Merinero, R., Lunar, R., Martínez-Frías, J., Somoza, L., and Díaz-del-Río, V., Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula), Mar. Petrol. Geol., 2008, vol. 25, pp. 706–713.Google Scholar
  86. Morse, J.W. and Luther, G.W. III, Chemical influences on trace metalsulfide interactions in anoxic sediments, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 3373–3378.Google Scholar
  87. Murphy, R. and Strongin, D.R., Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep., 2009, vol. 64, pp. 1–45.Google Scholar
  88. Nardi, S., Binda, P.L., Bacelle, L.S., and Concheri, G., Amino acids of Proterozoic and Ordovician sulfide-coated grains from western Canada: record of biologically mediated pyrite precipitation, Chem. Geol., 1994, vol. 111, pp. 1–15.Google Scholar
  89. Nasr-El-Din, H.A., Al-Humaidan, A.Y., Mohamed, S.K., and Al-Salman, A.M., Iron sulfide formation in water supply wells with gas lift, Proc. SPE International Symposium on Oilfield Chemistry, Houston, Texas, 2001.Google Scholar
  90. Ohfuji, H. and Rickard, D., Experimental syntheses of framboids—a review, Earth Sci. Rev., 2005, vol. 71, pp. 147–170.Google Scholar
  91. Ohmoto, H. and Kakegawa, T., 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence, Science, 1993, vol. 262, p. 555.Google Scholar
  92. Ono, S., Multiple-sulphur isotope biosignatures, Space Sci. Rev., 2008, vol. 135, pp. 203–220.Google Scholar
  93. Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D., and DeLong, E.F., Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediment, P. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 7663–7668.Google Scholar
  94. Passier, H.F., Middelburg, J.J., de Lange, G.J., and Böttcher, M.E., Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel, Geology, 1997, vol. 25, pp. 519–522.Google Scholar
  95. Pavlov, A.A. and Kasting, J.F., Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere, Astrobiology, 2002, vol. 2, pp. 2741.Google Scholar
  96. Peckmann, J. and Thiel, V., Carbon cycling at ancient methane-seeps, Chem. Geol., 2004, vol. 205, pp. 443–467.Google Scholar
  97. Pirajno, F., Hydrothermal Processes and Mineral Systems, Springer-Verlag, 2009.Google Scholar
  98. Piper, D.Z. and Calvert, S.E., A marine biogeochemical perspective on black shale deposition, Earth-Sci. Rev., 2009, vol. 95, pp. 63–96.Google Scholar
  99. Popa, R., Badescu, A., and Kinkle, B.K., Pyrite framboids as biomarkers for iron-sulfur systems, Geomicrobiol. J., 2004, vol. 21, pp. 1–14.Google Scholar
  100. Raiswell, R., Buckley, F., Berner, R.A., and Anderson, T.F., Degree of pyritization of iron as a paleoenvironmental indicator of bottom water oxygenation, J. Sed. Petrol., 1988, vol. 58, pp. 812–819.Google Scholar
  101. Raiswell, R. and Canfield, D.E., Sources of iron for pyrite formation, Am. J. Sci., 1998, vol. 298, pp. 219–245.Google Scholar
  102. Reaves, C.M., The migration of iron and sulfur during the early diagenesis of marine sediments, Ph.D. Dissertation, New Haven, Ct., Yale Univ., 1984.Google Scholar
  103. Rickard, D. and Morse, J.W., Acid volatile sulfide (AVS), Mar. Chem., 2005, vol. 97, pp. 141–197.Google Scholar
  104. Rickard, D. and Luther, G.W. III, Chemistry of iron sulfides, Chem. Rev., 2007, vol. 107, pp. 514–562.Google Scholar
  105. Ritger, S., Carson, B., and Suess, E., Methane-derived authigenic carbonates formed by subduction-induced porewater expulsion along the Oregon/Washington margin, Geol. Soc. Am. Bull., 1987, vol. 98, pp. 147–156.Google Scholar
  106. Rust, G.W., Colloidal primary copper ores at Cornwall Mines, southeastern Missouri, J. Geol., 1935, vol. 43, pp. 398–426.Google Scholar
  107. Schieber, J., Ways in which organic petrology could contribute to a better understanding of black shales, Int. J. Coal Geol., 2001, vol. 47, pp. 171–187.Google Scholar
  108. Schieber, J., Sedimentary pyrite: a window into the microbial past, Geology, 2002a, vol. 30, pp. 531–534.Google Scholar
  109. Schieber, J., The role of an organic slime matrix in the formation of pyritized burrow trails and pyrite concretions, Palaios, 2002b, vol. 17, pp. 104–109.Google Scholar
  110. Schieber, J. and Riciputi, L., Pyrite ooids in Devonian black shales record intermittent sea-level drop and shallow-water conditions, Geology, 2004, vol. 32, pp. 305–308.Google Scholar
  111. Schieber, J. and Riciputi, L., Pyrite and marcasite coated grains in the Ordovician Winnipeg formation, Canada: An intertwined record of surface conditions, stratigraphic condensation, geochemical “reworking,” and microbial activity, J. Sediment. Res., 2005, vol. 75, pp. 907–920.Google Scholar
  112. Schieber, J., Oxidation of detrital pyrite as a cause for marcasite formation in marine lag deposits from the Devonian of the eastern US, Deep-SeaRes. II, 2007, vol. 54, pp. 1312–1326.Google Scholar
  113. Schieber, J., Marcasite in Black Shales—a Mineral proxy for oxygenated bottom waters and intermittent oxidation of carbonaceous muds, 20111, J. Sediment. Res., vol. 81, pp. 447–458.Google Scholar
  114. Schieber, J., Iron sulfide formation, in Encyclopedia of Geobiology, Reitner, J. and Thiel, V. Eds., Dordrecht: Springer, 20112.Google Scholar
  115. Schneiderhöhn, H., Chalkographische untersuchung des mansfelder kupferschiefers, Neues Jahrb. Geol., 1923, vol. P-A 47, pp. 1–38.Google Scholar
  116. Schoonen, M.A.A., Mechanisms of sedimentary pyrite formation, GSA Special Paper, 2004, vol. 379, pp. 117–134.Google Scholar
  117. Scott, S.D., Chemical behavior of sphalerite and arsenopyrite in hydrothermal and metamorphic environments, Mineral. Mag., 1983, vol. 47, pp. 427–435.Google Scholar
  118. Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S.E., Berry, R.F., et al., Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration, Econ. Geol., 2009, vol. 104, pp. 1143–1168.Google Scholar
  119. Seal, R.R., Sulfur isotope geochemistry of sulfide minerals, Rev. Mineral. Geochem., 2006, vol. 61, pp. 633–677.Google Scholar
  120. Shen, Y., Buick, R., and Canfield, D.E., Isotopic evidence for microbial sulphate reduction in the early Archaean era, Nature, 2001, vol. 410, pp. 77–81.Google Scholar
  121. Shen, Y. and Buick, R., The antiquity of microbial sulphate, Earth-Sci. Rev., 2004, vol. 64, pp. 243–272.Google Scholar
  122. Squyres, S.W. and Knoll, A.H., Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 1–10.Google Scholar
  123. Stetter, K.O., Hyperthermophiles in the history of life, in Evolution of Hydrothermal Ecosystems on Earth (and Mars?), Bock, G.R. and Goode, J.A., Eds., New York: Wiley and Sons, 1996.Google Scholar
  124. Stumm, W. and Morgan, J.J., Aquatic Chemistry, New York: Wiley, 1996.Google Scholar
  125. Suzuki, I., Microbial leaching of metals from sulfide minerals, Biotechnol. Adv., 2001, vol. 19, pp. 119–132.Google Scholar
  126. Taylor, K.G. and Macquaker, J.H.S., Early diagenetic pyrite morphology in a mudstone-dominated succession: the lower Jurassic Cleveland Ironstone formation, eastern England, Sed. Geol., 2000, vol. 131, pp. 77–86.Google Scholar
  127. Thode, H.G. and Goodwin, A.M., Further sulfur and carbon isotope studies of Late Archean Iron-Formations of the canadian shield and the rise of sulfate reducing bacteria, Precambrian Res., 1983, vol. 20, pp. 337–356.Google Scholar
  128. Thomas, J.E., Skinner, W.M., and Smart, R.S.C., A comparison of the dissolution behavior of troilite with other iron(II) sulphides; implications of structure, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 831–843.Google Scholar
  129. Vaughan, D.J., Sulfide Mineralogy and Geochemistry, Rev. Mineral. Geochem., 2006, vol. 61, Geochemical Society, Mineralogical Society of America.Google Scholar
  130. Wacey, D., Saunders, M., Brasier, M.D., and Kilburn, M.R., Earliest microbially mediated pyrite oxidation in ∼3.4 billion-year-old sediments, Earth Planet. Sci. Lett., 2011, vol. 301, pp. 393–402.Google Scholar
  131. Wächtershäuser, G., Life as we don’t know it, Science, 2000, vol. 289, pp. 1307–1308.Google Scholar
  132. Wang, Q. and Morse, J.W., Pyrite formation under conditions approximating those in anoxic sediments; I. Pathway and morphology, Mar. Chem., 1996, vol. 52, pp. 99–121.Google Scholar
  133. Weiner, S. and Dove, P.M., An Overview of biomineralization processes and the problem of the vital effect, Rev. Mineral. Geochem., 2003, vol. 54, no. 1, pp. 1–29.Google Scholar
  134. Whitehouse, M.J., Kamber, B.S., Fedo, C.M., and Lepland, A., Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland, Chem. Geol., 2005, vol. 222, pp. 112–131.Google Scholar
  135. Wilkin, R.T. and Barnes, H.L., Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulphur species, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 4167–4179.Google Scholar
  136. Wilkin, R.T., Barnes, H.L., and Brantley, S.L., The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3897–3912.Google Scholar
  137. Wilkin, R.T. and Barnes, H.L., Formation processes of framboidal pyrite, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 323–339.Google Scholar
  138. Wood, C.R., Water quality of large discharges from mines in the anthracite region of eastern Pennsylvania: U.S. geological survey water-resources investigations, Report 95–4243, 1996.Google Scholar
  139. Zimmermann, R.A. and Spreng, A.C., Sedimentary and diagenetic features in the sulfide-bearing sedimentary dikes and strata of Lower Ordovician dolomites, Decaturville, Missouri, U.S.A., in Syngenesis and Epigenesis in the Formation of Mineral Deposits, Wanschkuhn, A., Kluth, C., and Zimmermann, R.A., Eds., Heidelberg: Springer, 1984.Google Scholar
  140. Zolotov, M.Y. and Shock, E.L., Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett., 2005, vol. 32, p. L21203.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • B. Cavalazzi
    • 1
    • 2
  • A. Agangi
    • 1
  • R. Barbieri
    • 2
  • F. Franchi
    • 2
    • 3
  • G. Gasparotto
    • 2
  1. 1.Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Dipartimento di Scienze Biologiche, Geologiche e AmbientaliUniversità di BolognaBolognaItaly
  3. 3.ISMAR-CNRU.O.S. BolognaBolognaItaly

Personalised recommendations