Geology of Ore Deposits

, Volume 55, Issue 7, pp 558–566 | Cite as

Kasatkinite, Ba2Ca8B5Si8O32(OH)3 · 6H2O6, a new mineral from the Bazhenovskoe deposit, the Central Urals, Russia

  • I. V. PekovEmail author
  • N. V. Chukanov
  • Ya. E. Filinchuk
  • A. E. Zadov
  • N. N. Kononkova
  • S. G. Epanchintsev
  • P. Kaden
  • A. Kutzer
  • J. Göttlicher


A new mineral, kasatkinite, Ba2Ca8B5Si8O32(OH)3 · 6H2O, has been found at the Bazhenovskoe chrysotile asbestos deposit, the Central Urals, Russia in the cavities in rhodingite as a member of two assemblages: (l) on prehnite, with pectolite, calcite, and clinochlore; and (2) on grossular, with diopside and pectolite. Kasatkinite occurs as spherulites or bunches up to 3 mm in size, occasionally combined into crusts. Its individuals are acicular to hair-like, typically split, with a polygonal cross section, up to 0.5 mm (rarely, to 6 mm) in length and to 20 μm in thickness. They consist of numerous misoriented needle-shaped subindividuals up to several dozen μm long and no more than 1 μm thick. Kasatkinite individuals are transparent and colorless; its aggregates are snow white. The luster is vitreous or silky. No cleavage was observed; the fracture is uneven or splintery for aggregates. Individuals are flexible and elastic. The Mohs’ hardness is 4–4.5. D meas = 2.95(5), D calc = 2.89 g/cm3. Kasatkinite is optically biaxial (+), α = 1.600(5), β = 1.603(2), γ = 1.626(2), 2V meas = 30(20)°, 2V calc = 40°. The IR spectrum is given. The 11B MAS NMR spectrum shows the presence of BO4 in the absence of BO3 groups. The chemical composition of kasatkinite (wt %; electron microprobe, H2O by gas chromatography) is as follows: 0.23 Na2O, 0.57 K2O, 28.94 CaO, 16.79 BaO, 11.57 B2O3, 0.28 Al2O3, 31.63 SiO2, 0.05 F, 9.05 H2O, −0.02 −O=F2; the total is 99.09. The empirical formula (calculated on the basis of O + F = 41 apfu, taking into account the TGA data) is: Na0.11K0.18Ba1.66Ca7.84B5.05Al0.08Si8.00O31.80(OH)3.06F0.04 · 6.10H2O. Kasatkinite is monoclinic, space group P21/c, P2/c, or Pc; the unit-cell dimensions are a = 5.745(3), b = 7.238(2), c = 20.79 (1) Å, β = 90.82(5)°, V = 864(1) Å3, Z = 1. The strongest reflections (d Å–I[hkl]) in the X-ray powder diffractions pattern are: 5.89–24[012], 3.48–2.1[006], 3.36–24[114]; 3.009–100[\(12\bar 1\), 121, \(10\bar 6\)], 2.925–65[106, \(12\bar 2\), 122], 2.633–33[211, 124], 2.116–29[\(13\bar 3\), 133, 028]. Kasatkinite is named in honor of A.V. Kasatkin (b. 1970), a Russian amateur mineralogist and mineral collector who has found this mineral. Type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.


Differential Scanning Calorimetry Tourmaline Diopside Mineral Species Chrysotile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonov, A.A., Mineralogiya rodingitov Bazhenovskogo giperbazitovogo massiva (Mineralogy of rhodingites of the Bazhenovskoe deposit), St. Petersburg: Nauka, 2003.Google Scholar
  2. Christy, A.G., Grew, E.S., Mayo, S.C., et al., Hyalotekite, (Ba,Pb,K)4(Ca,Y)2Si8(B,Be)2(Si,B)2O28F, a tectosilicate related to scapolite: new structure refinement, phase transitions and a short-range ordered 3b superstructure, Mineral. Mag., 1998, vol. 62, pp. 77–92.CrossRefGoogle Scholar
  3. Du, L.-S., Allwardt, J.R., Schmidt, B.C., and Stebbins, J.F., Pressure-induced structural changes in a borosilicate glassforming liquid: boron coordination, non-bridging oxygens and network ordering, J. Non-Crystalline Solids, 2004, vol. 337, pp. 196–200.CrossRefGoogle Scholar
  4. Du, L.-S. and Stebbins, J.F., Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses, J. Non-Crystalline Solids, 2003a, vol. 315, pp. 239–255.CrossRefGoogle Scholar
  5. Du, L-S., and Stebbins, J.F., Nature of silicon-boron mixing in sodium borosilicate glasses: a high-resolution 11B and 17O NMR study, J. Phys. Chem. B, 2003b, vol. 107, pp. 10063–10076.CrossRefGoogle Scholar
  6. Efimov, V.I., Rodingite of the Bazhenovskoe chrysotileasbestos deposit, Ural Geol. Zh., 2004, no. 2(38), pp. 93–121.Google Scholar
  7. Erokhin, Yu.V., Cadaster of mineral species of the Bazhenovskoe deposit, in Mater. Ural’skoi mineralogicheskoi shkoly-1997 (Proceeding of Ural Mineralogical School-1997), Yekaterinburg: UGGGA, 1997, pp. 178–180.Google Scholar
  8. Erokhin, Yu.V. and Shagalov, E.S., Boron-bearing minerals of the Bazhenovskoe deposit resulted from effect of fluids derived from granite intrusion, in Problemy genezisa magmaticheskikh i metamorficheskikh porod (Genesis of igneous and metamorphic rocks), St. Petersburg, 1998, pp. 165–166.Google Scholar
  9. Massiot, D., Fayon, F., Capron, M., et al., Modelling one- and two-dimensional solid-state NMR spectra, Magnetic Resonance in Chemistry, 2002, vol. 40, pp. 70–76.CrossRefGoogle Scholar
  10. Mineralogiya rodingitov Bazhenovskogo mestorozhdeniya khrizotil-asbesta (Mineralogy of rodingites of the Bazhenovskoe chrysotile-asbestos deposit) O. K. Ivanov, E.M. Spiridonov, and V.G. Krivovichev, Eds., Yekaterinburg: UGGGA, 1996.Google Scholar
  11. Popov, V.A., Tochilinite, twins of diopside, brucite, chabasite, and harmotome from rodingites of the Bazhenovskoe deposit, Ural. Miner. Sb., 1995, no. 5, pp. 139–144.Google Scholar
  12. Rollion-Bard, C., Blamart, D., Trebosc, J., Tricot, G., Mussi, A., and Cuif, J.-P., Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using 11B MAS NVR and FELS, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 1003–1012.CrossRefGoogle Scholar
  13. Sokolov, Yu.A. and Luzin, V.P., Boron (astrakhanite) mineralization in serpentinites of the Bazhenovskoe chrysotileasbestos deposit, Izv. AN SSSR, Ser. Geol., 1981, no. 9, pp. 133–136.Google Scholar
  14. Zoloev, K.K., Chemyakin, V.I., Shmaina, M.Ya., et al., Bazhenovskoe mestorozhdenie khrizotil-asbesta (The Bazhenovskoe chrysotile-asbestos deposit), Moscow: Nedra, 1985.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. V. Pekov
    • 1
    Email author
  • N. V. Chukanov
    • 2
  • Ya. E. Filinchuk
    • 3
  • A. E. Zadov
    • 4
  • N. N. Kononkova
    • 5
  • S. G. Epanchintsev
    • 6
  • P. Kaden
    • 7
  • A. Kutzer
    • 7
  • J. Göttlicher
    • 8
  1. 1.Faculty of GeologyMoscow State UniversityMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Institute of Condensed Matter and NanosciencesUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.NPP Teplokhim OOOMoscowRussia
  5. 5.Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  6. 6.Emanzhelinka, Chelyabinsk oblastRussia
  7. 7.Karlsruhe Institute of TechnologyInstitute for Nuclear Waste DisposalEggenstein-LeopoldshafenGermany
  8. 8.Karlsruhe Institute of TechnologyInstitute for Synchrotron RadiationEggenstein-LeopoldshafenGermany

Personalised recommendations