Geology of Ore Deposits

, Volume 55, Issue 7, pp 594–600 | Cite as

Steklite, KAl(SO4)2: A finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure

  • M. N. Murashko
  • I. V. Pekov
  • S. V. Krivovichev
  • A. P. Chernyatyeva
  • V. O. Yapaskurt
  • A. E. Zadov
  • M. E. Zelensky
Article

Abstract

Steklite KAl(SO4)2 has been found in sublimates of the Yadovitaya (Poisonous) fumarole at the second cinder cone of the northern breach of the Great Fissure Tolbachik Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. Steklite was approved as a valid mineral species by the Commission on New Minerals, Nomenclature, and Mineral Classification of the International Mineralogical Association on June 2, 2011 (IMA no. 2011-041). The name steklite is left for this mineral, as it was named by Chesnokov et al. (1995) for its technogenic analog from a burnt dump of coal mine no. 47 at Kopeisk, the Southern Urals, Russia. It is named after the Russian word steklo, meaning glass, in allusion to the visual similarity of its lamellae to thin glass platelets. At Tolbachik, steklite is associated with alumoklyuchevskite, langbeinite, euchlorine, fedotovite, chalcocyanite, hematite, and lyonsite. It occurs as hexagonal or irregular-shaped lamellar crystals with the major form {001} reaching 30 μm in thickness and 0.2 mm (occasionally up to 1 mm) in width. The crystals are frequently split. They are combined into openwork aggregates or thin crusts up to 1.5 × 2.5 cm in area. Steklite is transparent and colorless, with vitreous luster. The cleavage is perfect, parallel to (001). The mineral is brittle. The Mohs’ hardness is 2.5. D calc is 2.797 g/cm3. Steklite is optically uniaxial, (−), ω = 1.546(2), ɛ = 1.533(3). The chemical composition (wt %, electron-microprobe data) is as follows: 0.09 Na2O, 18.12 K2O, 0.08 CaO, 0.03 MnO, 2.02 Fe2O3, 18.18 Al2O3, 61.80 SO3. The total is 100.37. The empirical formula calculated on the basis of eight O atoms is: (K0.997Na0.008Ca0.004)Σ1.009(Al0.925Fe 0.066 3+ Mg0.003Mn0.001)Σ0.995S2.01O8. Steklite is trigonal, space group P321, a = 4.7281(3), c = 7.9936(5) Å, V = 154.76(17)Å3, Z =1. The strongest reflections in the X-ray powder diffraction pattern (d, Å-I[hkl]) are: 8.02–34[001], 4.085–11[100], 3.649–100[011, 101], 2.861–51[012, 102], 2.660 - 19[003], 2.364–25[110], 2.267–14[111, 111, 103], 1.822–12[022, 202]. In the structure of steklite examined in microtwinned crystal with R = 0.0732, the SO4 tetrahedral anions are shared-corners with distorted AlO6 trigonal prisms to form 2 [(Al, Fe) (SO4)2] layers coplanar to (001). The K+ cations are in the interlayer space. The type specimen of steklite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkemper, J. and Fuess, H., The crystal structures of NaMgPO4, Na2CaMg(PO4)2, and Na18Ca13Mg5(PO4)18: new examples for glaserite-related structures, Ztschr. Kristal., 1998, vol. 213, pp. 282–287.CrossRefGoogle Scholar
  2. Anthony, J.W., McLean, W.J., and Laughon, R.B., The crystal structure of yavapaiite: a discussion, Am. Mineral., 1972, vol. 57, pp. 1546–1549.Google Scholar
  3. Bol’shoe treshchinnoe Tolbachinskoe izverzhenie, Kamchatka, 1975–1976 (The Great Fissure Tolbachik Eruption, Kamchatka, 1975–1976, Fedotov S.A., Ed., Moscow: Nauka, 1984.Google Scholar
  4. Bykova, E.Y., Berlepsch, P., Kartashov, P.M., Bruegger, J., Armbruster, T., and Criddle, A.J., Vergasovaite Cu3O[(Mo,S)O4[SO4], a new copper-oxy-molybdate-sulfate from Kamchatka, Schweiz. Miner. Petrogr., 1998, vol. 78, pp. 479–488.Google Scholar
  5. Chesnokov, B.V., Bazhenova, L.F., Bushmakin, A.F., et al., New minerals from burnt dumps of the Chelyabinsk coal basin (communication seven), Ural. Mineral. Sbornik, 1995, no. 4, pp. 3–28.Google Scholar
  6. Graeber, E.J. and Rosenzweig, A., The crystal structures of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2(H2O)4, Am. Mineral., 1971, vol. 56, pp 1917–1933.Google Scholar
  7. Hawthorne, F.C., Krivovichev, S.V., and Burns, P.C., Crystal chemistry of sulfate minerals, Rev. Miner. Geochem., 2000, vol. 40, pp. 1–112.CrossRefGoogle Scholar
  8. Krivovichev, S.V., Structural crystallography of inorganic oxysalts, Oxford: University Press, 2008.Google Scholar
  9. Lapham, D.M., Barns, J.H., Downey, W.Jr., and Finkelman, R.B., Mineralogy associated with burning anthracite deposits of eastern Pennsylvania, Reports of the Common-wealth of Pennsylvania, Dept. of Environmental Resources, Bureau of Topographic and Geologic Survey, Mineral Resources, 1980, vol. 78, pp.1–82.Google Scholar
  10. Manoli, J.M., Herpin, P., and Pannetier, G., Structure cri-stalline du sulfate double d’aluminium et de potassium, Bull. Soc. Chim. France, 1970, pp. 98–101.Google Scholar
  11. Mizutani, Y., Volcanic sublimates and incrustations from Showashinzan, J. Earth Sci. Nagoya Univ., 1962, vol. 10, pp. 135–148.Google Scholar
  12. Shcherbakova, E.P., Bazhenova, L.F., and Chesnokov, B.V., Godovikovite NH4(Al,Fe)(SO4)2, a new ammonium-bearing sulfate, Zapiski VMO, 1988, vol. 117, no. 2, pp. 208–211.Google Scholar
  13. Stoiber, R.E. and Rose, W.I., Fumarole incrustations at active Central American volcanoes, Geochim. Cosmochim. Acta, 1974, vol. 38, no. 4, pp. 495–516.CrossRefGoogle Scholar
  14. Vergasova, L.P. and Filatov, S.K., Minerals of volcanic exhalations: a special genetic group from data of the Tol-bachik eruption 1975–1976, Zapiski VMO, 1993, vol. 122, no. 4, pp. 68–76.Google Scholar
  15. West, D.V., Huang, Q., Zandbergen, H.W., McQueen, T.M., and Cava, R.J., Structural disorder, octahedral coordination and two-dimensional ferromagnetism in anhydrous alums. J. Solid State Chem., 2008, vol. 181, pp. 2768–2775.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. N. Murashko
    • 1
  • I. V. Pekov
    • 2
  • S. V. Krivovichev
    • 3
  • A. P. Chernyatyeva
    • 3
  • V. O. Yapaskurt
    • 2
  • A. E. Zadov
    • 4
  • M. E. Zelensky
    • 5
  1. 1.ZAO Systematic MineralogySt. PetersburgRussia
  2. 2.Faculty of GeologyMoscow State UniversityMoscowRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.NPP Teplokhim OOOMoscowRussia
  5. 5.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations