Advertisement

Geology of Ore Deposits

, Volume 55, Issue 7, pp 532–540 | Cite as

Davinciite, Na12K3Ca6Fe 3 2+ Zr3(Si26O73OH)Cl2, a New K,Na-Ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

  • A. P. Khomyakov
  • G. N. Nechelyustov
  • R. K. Rastsvetaeva
  • K. A. Rozenberg
Article

Abstract

This paper presents a description of a new zirconosilicate of the eudialyte group, which was named davinciite in honor of Leonardo da Vinci (1452–1519), a famous Italian scientist, painter, sculptor and architect. The new mineral has been found in hyperagpaitic pegmatite at the Rasvumchorr Mountain, Khibiny Pluton, Kola Peninsula, as relict inclusions, up to 1–2 mm in size in a rastsvetaevite matrix. It is associated with nepheline, sodalite, potassium feldspar, delhayelite, aegirine, shcherbakovite, villiaumite, nitrite, nacaphite, rasvumite, and djerfisherite. Davinciite is dark lavender and transparent, with a vitreous luster and white streak. The new mineral is brittle, with conchoidal fracture; the Mohs’ hardness is 5. No indications of cleavage or parting were observed. The measured density is 2.82(2) g/cm3 (volumetric method); the calculated density is 2.848 g/cm3. Davinciite is optically uniaxial, positive; ω = 1.603(2), ɛ = 1.605(2). It is nonpleochroic and nonfluorescent in UV light. The new mineral slowly breaks down and gelates in 50% HCl and HNO3. It is trigonal, space group R3m. The unit-cell dimensions are a = 14.2956(2), c = 30.0228(5) Å, V=5313.6(2) Å3. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are as follows: 2.981(100)(315), 2.860(96)(404), 4.309(66)(205), 3.207(63)(208), 6.415(54)(104), 3.162(43)(217). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 12.69 Na2O, 3.53 K2O, 11.02 CaO, 0.98 SrO, 0.15 BaO, 5.33 FeO, 0.37 MnO, 0.07 Al2O3, 51.20 SiO2, 0.39 TiO2, 11.33 ZrO2, 0.21HfO2, 0.09 Nb2O5, 1.89 Cl, 0.93H2O, -O = Cl2 0.43; total is 99.75. The empirical formula calculated on the basis of Si + Al + Zr + Hf + Ti + Nb = 29 (Z = 3) is (Na1l.75Sr0.29Ba0.03)Σ12.07(K2.28Na0.72)Σ3Ca5.99(Fe2.26Mn0.16)Σ2.42(Zr2.80Ti0.15Hf0.03Nb0.02) Σ3(Si1.96Al0.04)Σ2[Si3O9]2 [Si9O27]2[(OH)1.42O0.58]Σ2[Cl1.62(H2O)0.38]Σ2 · 0.48H2O. The simplified formula is Na12K3Ca6Fe 3 2+ Zr3(Si26O73OH)Cl2. The IR-spectrum is given and the crystal structure is described. The position of davinciite in the crystal chemical taxonomy of the eudialyte group is shown, and its relationships with the other eudialyte-group minerals (acentric eudialyte, andrianovite, and kentbrooksite) are characterized. The type material of davinciite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

Keywords

Nepheline Kola Peninsula Aegirine Conchoidal Fracture Khibiny Pluton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageeva, O.A., Borutsky, B.E., Chukanov, N.V., and Sokolova, M.N., Alluaivite and genetic aspect of the formation of eudialytes enriched in Ti from the Khibiny pluton, Zapiski VMO, 2002, vol. 131, no. 1, pp. 99–106.Google Scholar
  2. Ageeva, O.A., Borutsky, B.E., and Khangulov, V.V., Eudialyte as a mineralogical and geochemical indicator of metasomatic processes in the formation of poikilitic nepheline syenites of the Khibina massif, Geochem. Intern., 2010, vol. 40, no. 10, pp. 997–1003.Google Scholar
  3. Feklichev, V.G., Razina, I.S., Kataeva, Z.T., Type of eudialyte from the Khibiny alkaline pluton, in: Eksperimental’nometodich. issledovaniya rudnykh mineralov (Experimental and methodical study of ore minerals), Moscow: Nauka, 1965, pp. 188–194.Google Scholar
  4. Giuseppetti, G., Mazzi, F., and Tadini, C., The crystal structure of eudialyte, Tschermaks Mineral. Petrogr. Mitt., 1971, vol. 16, pp. 105–127.CrossRefGoogle Scholar
  5. Golyshev, V.M., Simonov, V.I., and Belov, N.V., On the crystal structure of eudialyte, Kristallografiya, 1971, vol. 16, no. 1, pp. 93–98.Google Scholar
  6. Gula, A., Ferraris, G., and Khomyakov, A.P., Crystal chemical characterization of the two eudialytes s.s. with maximal Si content from Kola Peninsula, in Abstracts of the 32th International Geological Congress, Florence, 2004, pp. 214–215.Google Scholar
  7. Johnsen O., Ferraris G., Gault R. A., et al., The nomenclature of eudialyte-group minerals, Canad. Mineral., 2003, vol. 41, pp. 785–794.CrossRefGoogle Scholar
  8. Johnsen, O. and Grice, J.D., The crystal chemistry of the eudialyte group, Canad. Mineral., 1999, vol. 37, pp. 865–891.Google Scholar
  9. Johnsen, O., Grice, J.D., and Gault, R.A. Kentbrooksite from the Kangerdlugssuaq intrusion, East Greenland, a new Mn-REE-Nb-F end member in a series within the eudialyte group: description and crystal structure, Eur. J. Mineral., 1998, vol. 10, pp.207–219.Google Scholar
  10. Khomyakov, A.P., Inheritance of crystal structures of minerals in pseudomorph formation as a species forming agent, in Geneticheskaya informatsiya v mineralakh (Genetic information in minerals), Syktyvkar, 1980, pp. 20–21.Google Scholar
  11. Khomyakov, A.P., Mineralogy of Hyperagpaitic Alkaline Rocks, Oxford, Clarendon Press, 1995.Google Scholar
  12. Khomyakov, A.P., Transformation mineral species and their use in palaeomineralogical reconstructions, in Abstracts of the 30th International Geological Congress, Beijing, 1996, vol. 2/3, pp. 450.Google Scholar
  13. Khomyakov, A.P., Notion of transformation mineral species and varieties, in Mineralogicheskoe obshchestvo i mineralogicheskaya nauka na poroge XXI veka. Tez. dokl. k IX sëzdu miner. obshchestva (Abstracts of the 9th Congress of Russian Mineralogical Society: mineralogical society and mineralogy at the turn of XXI century), St. Petersburg, 1999, p. 263.Google Scholar
  14. Khomyakov, A.P., Crystal chemical systematics of the eudialyte-group minerals, in Abstracts of the 32th International Geological Congress, Florence, 2004, pp. 309–310.Google Scholar
  15. Khomyakov, A.P., Crystal chemical systematics of the eudialyte-group minerals, in: Proceedings of the 3rd Intern. Symp. on mineral diversity: research and preservation, Sofia: National Museum of Earth and Mankind, Sofia, 2007, pp. 257–264.Google Scholar
  16. Khomyakov, A.P., Korovushkin, V.V., Perfiliev, Yu.D., and Cherepanov, V.M., Location, valence states, and oxidation mechanisms of iron in eudialyte-group minerals from Mossbauer spectroscopy, Phys. Chem. Minerals, 2010, vol. 37, pp. 543–554.CrossRefGoogle Scholar
  17. Khomyakov, A.P., Nechelyustov, G.N., and Arakcheeva, A.V., Rastsvetaevite Na27K8Ca12Fe3Zr6Si4[Si3O9]41 [Si9O27]4(O,OH,H2O) · 6Cl2, a new mineral with modular eudialyte-type structure and crystal chemical systematics of the eudialyte group, Zapiski RMO, 2006, vol. 135, no. 1, pp. 49–65.Google Scholar
  18. Khomyakov, A.P., Nechelyustov, G.N., Rastsvetaeva, R.K., and Rozenberg, K.A., Andrianovite, Na12(K,Sr,Ce)3 Ca6Mn3Zr3NbSi25O73(O,H2O,OH)5, a new K-rich mineral of the eudialyte group from the Khibiny alkaline pluton, Russia, Geol. Ore Deposits, 2008, vol. 50, spec. issue 8 (Zapiski Russian Mineral. Soc.), pp. 705–712.CrossRefGoogle Scholar
  19. Khomyakov, A.P. and Yushkin, N.P., Principle of inheritance in crystallogenesis, Doklady AN SSSR, 1981, vol. 256, no. 5, pp. 1229–1233.Google Scholar
  20. Nickel, E.H. and Grice, J.D., The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998, Canad. Mineral., 1998, vol. 36,pt. 3, pp. 913–927.Google Scholar
  21. Pol’shin, E.V., Platonov, A.N., Borutzky, et al., Optical and Mossbauer study of minerals of the eudialyte group, Phys. Chem. Minerals, 1991, vol. 18, pp. 117–125.CrossRefGoogle Scholar
  22. Rastsvetaeva, R.K. and Andrianov, V.I., The new data of the crystal structure of eudialyte, Doklady AN SSSR, 1987, vol. 293, no. 5, pp. 1122–1126.Google Scholar
  23. Rastsvetaeva, R.K. and Khomyakov, A.P., Modular structure of a potassium-rich analog of eudialyte with doubled parameter c, Cryst. Rep., 2001, vol. 46, no. 4, pp. 647–653.CrossRefGoogle Scholar
  24. Rastsvetaeva, R.K. and Khomyakov, A.P., Crystal chemistry of modular eudialytes, Cryst. Rep., 2003, vol. 48,suppl. 1, pp. 69–81.Google Scholar
  25. Rastsvetaeva, R.K., Rozenberg, K.A., and Khomyakov, A.P., Crystal structure of K analog of kentbrooksite, Dokl. Chem., 2005, vol. 403,part. 2, pp. 148–151.CrossRefGoogle Scholar
  26. Rastsvetaeva, R.K., Rozenberg, K.A., and Khomyakov, A.P., Crystal structure of high-silica K,Na-ordered acentric eudialyte analog, Dokl. Chem., 2009, vol. 424, no. 1, pp. 11–14.CrossRefGoogle Scholar
  27. Sokolova, M.N., Borutsky, B.E., Arkhipenko, D.K., et al., Potassium-hydronium eudialyte from Khibiny, Kola Peninsula, Doklady AN SSSR, 1991, vol. 318, no. 3, pp. 712–716.Google Scholar
  28. Yushkin, N.P., Khomyakov, A.P., and Evzikova, N.Z., Principle of inheritance in mineralogenesis, in Seriya preprintov “Nauchnye doklady” (Series of preprints: Scientific reports), Syktyvkar: Komi Filial AN SSSR, 1984, issue 93, pp. 1–32.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. P. Khomyakov
    • 1
  • G. N. Nechelyustov
    • 2
  • R. K. Rastsvetaeva
    • 3
  • K. A. Rozenberg
    • 3
  1. 1.Institute of Mineralogy, Geochemistry, and Crystal Chemistry of Rare ElementsMoscowRussia
  2. 2.All-Russia Institute of Mineral ResourcesMoscowRussia
  3. 3.Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations