Advertisement

Geology of Ore Deposits

, Volume 54, Issue 7, pp 570–574 | Cite as

First data on chemical composition of zircon from lithium-fluorine granite of the Severnyi pluton, Chukchi Peninsula

  • V. I. AlekseevEmail author
  • Yu. B. Marin
  • S. G. Skublov
  • I. M. Gembitskaya
Minerals and Parageneses of Minerals

Abstract

The chemical composition of zircons from lithium-fluorine granite of the Severny pluton in the Chaun region, Chukchi Peninsula, has been studied. The magmatic origin of zircons has been established. Elevated LREE, Li, and Nb contents; moderate enrichment in Hf; and deep Eu anomalies are characteristic of zircons from rare-metal granite. The contents and distribution of chemical elements in studied zircons differ from those of biotite granite. Zircons from lithium-fluorine granite of the Severny pluton also differ from the worldwide analogs in moderate Hf, Y, and REE concentrations and extremely low contents of U, Th, and other incompatible elements.

Keywords

Zircon Topaz Biotite Granite Heavy Admixture Chukchi Peninsula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, H.M., Helba, H., and Matsueda, H., Chemistry of Zircon in Rare-Metal Granitoids and Associated Rocks, Eastern Desert, Egypt, Res. Geol., 2009, vol. 59, no. 1, pp. 51–68.CrossRefGoogle Scholar
  2. Alekseev, V.I., Origin of Lithium-Fluorine Granite of the Severny Pluton, Chukchi Peninsula, Zap. Ros. Miner. O-va, 2005, vol. 134, no. 6, pp. 19–30.Google Scholar
  3. Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.U., Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type, Contrib. Miner. Petrol., 2002, vol. 143, pp. 602–622.CrossRefGoogle Scholar
  4. Breiter, K., Förster, H.-J., Škoda, R., Extreme P-, Bi-, Nb-, Sc-, U- and F-rich Zircon from Fractionated Perphosphorous Granites: the Peraluminous Podlesí Granite System. Czech Republic, Lithos, 2006, vol. 88, pp. 15–34.CrossRefGoogle Scholar
  5. Breiter, K., The Involvement of F, CO2, and As in the Alteration of Zr-Th-REE-Bearing Accessory Minerals in the Hora Svate Kateriny A-type Granite, Czech Republic, Can. Miner., 2009, vol. 47, pp. 1329–1357.CrossRefGoogle Scholar
  6. Förster, H.-J., Composition and Origin of Intermediate Solid Solutions in the System Thorite-Xenotime-Zircon-Coffinite, Lithos, 2006, vol. 88, pp. 35–55.CrossRefGoogle Scholar
  7. Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of the Eastern Russia), Vladivostok: Dal’nauka, 2006, book 1.Google Scholar
  8. Hoskin, P.W.O. and Schaltegger, U., The Composition of Zircon and Igneous and Metamorphic Petrogeneses, Rev. Miner. Geochem., 2003, vol. 53, no. 1, pp. 27–62.CrossRefGoogle Scholar
  9. Huang, X.L., Wang, R.C., Chen, X.M., et al., Vertical Variations in the Mineralogy of the Yichun Topaz-Lepidolite Granite, Jiangxi Province, Southern China, Can. Miner., 2002, vol. 40, pp. 1047–1068.CrossRefGoogle Scholar
  10. Johan, Z. and Johan, V., Accessory Minerals of the Cínovec (Zinnwald) Granite Cupola, Czech Republic: Indicators of Petrogenetic Evolution, Miner. Petrol., 2005, vol. 83, pp. 113–150.CrossRefGoogle Scholar
  11. Kempe, U., Gruner, T., Renno, A.D., et al., Discussion on Wang et al. (2000). Chemistry of Hf-Rich Zircons from the Laoshan I- and A-type Granites, Eastern China, Miner. Mag., 2004, vol. 68, pp. 669–675.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. I. Alekseev
    • 1
    Email author
  • Yu. B. Marin
    • 1
  • S. G. Skublov
    • 2
  • I. M. Gembitskaya
    • 1
  1. 1.St. Petersburg State Mining Institute (Technical University)St. PetersburgRussia
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations