Geology of Ore Deposits

, Volume 53, Issue 8, pp 758–766 | Cite as

Cuprokalininite, CuCr2S4, a new sulfospinel from metamorphic rocks of the Sludyanka Complex, South Baikal region

  • L. Z. ReznitskyEmail author
  • E. V. Sklyarov
  • Z. F. Ushchapovskaya
  • L. F. Suvorova
  • Yu. S. Polekhovsky
  • P. Dzerzanovsky
  • I. G. Barash


Cuprokalininite as an accessory mineral has been found in Cr-V-bearing quartz-diopside metamorphic rock of the Sludyanka Complex, South Baikal region, Russia. This mineral is named as Cu analogue of kalininite (ZnCr2S4), is associated with quartz, Cr-V-bearing tremolite and mica, calcite, diopside-kosmochlor, goldmanite-uvarovite, dravite-chromdravite, Cr-V spinellide, karelianite-eskolaite, V-bearing titanite, pyrite, and plagioclase. Cuprokalininite forms euhedral microcrystals up to 0.05–0.20 mm in size, of octahedral and cuboctahedral habit with faces o {111} and a {100}, and polysynthetic and simple twinning along the {111}. Cleavage and parting were not observed. The mineral is black with a dark bronze tint, black streak, and metallic luster. The microhardness (VHN) is 356–458 (loadings are 20 and 30 g), 396 kgf/mm2, on average. The Mohs hardness is 4.5–5.0, d calc = 4.16(2). In reflected light, the mineral is pale-cream-colored, without anisotropy; reflectance values (λ, nm-R, %): 400-34.3, 420-34.1, 440-33.9, 460-33.7, 480-33.5, 500-33.2, 520-33.0, 540-32.8, 560-32.3, 580-32.2, 600-31.9, 620-31.6, 640-31.2, 660-30.9, 680-30.6, 700-30.4. Cubic, space group Fd \(\bar 3\) m, Z = 8; unit cell parameter a = 9.814(2) Å, V = 945.2(4) Å3. The strongest lines of the X-ray powder diffraction pattern [d, Å (I) (hkl)]: 3.44 (6)(220), 2.94 (10)(311), 2.44 (6)(400), 1.884 (9)(511, 333), 1.731 (10)(440), 1.133 (6)(751, 555), 1.098 (6)(840), 1.030 (6)(931), 1.002 (10)(844). Chemical composition (mean of 202 microprobe analyses of 11 grains, wt %): Cu 21.03, Fe 0.47, Zn 0.17, Cr 29.01, V 5.85, As 0.21, Sb 0.08, S 43.25; the total is 100.07. The empirical formula calculated on the basis of seven ions is (Cu0.98Fe0.02Zn0.01)1.01(Cr1.65V0.34As0.01)2.00S3.99. The type material has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia.


Tourmaline Diopside Unit Cell Dimension Polysynthetic Twin Mohs Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballal, M.M. and Mande, C., X-Ray Spectroscopic Study of Valency of the Copper in Spinels CuCr2X4, Solid State Commun., 1976, vol. 19, no. 4, pp. 325–327.CrossRefGoogle Scholar
  2. Goodenough, J.B., Tetrahedral-Site Copper in Chalcogenide Spinels, Solid State Commun., 1967, vol. 5, no. 8, pp. 577–580.CrossRefGoogle Scholar
  3. Goodenough, J.B., Description of Outer d-Electrons in Thiospinels, J. Phys. Chem. Solids, 1969, vol. 30, no. 2, pp. 261–280.CrossRefGoogle Scholar
  4. Hill, R.J., Craig, J.R., and Gibbs, G.V., Systematics of the Spinel Structure Type, Phys. Chem. Miner., 1979, vol. 4, pp. 317–339.CrossRefGoogle Scholar
  5. Konev, A.A., Reznitsky, L.Z., Feoktistov, G.D., Sapozhnikov, A.N., Koneva, A.A., Sklyarov, E.V., Vorob’ev, E.I., Ivanov, V.G., and Ushchapovskaya, Z.F., Mineralogiya vostochnoi Sibiri na poroge XXI veka (novye i redkie mineraly) (Mineralogy of East Siberia at the Turn of the 21st Century: New and Rare Minerals), Moscow: Intermet-Engineering, 2001.Google Scholar
  6. Kovtun, N.M., Kalinnikov, V.T., and Shemyakov, A.A., One of the Mechanism of Phase Transition from Ferromagnetic to Ferrimagnetic State, Pis’ma v ZhETF, 1977, vol. 25, no. 3, pp. 162–164.Google Scholar
  7. Kovtun, N.M., Prokopenko, V.K., and Shemyakov, A.A., Electroconductivity and Electron Exchange in Spinel Structures, Solid State Commun., 1978, vol. 26, pp. 877–878.CrossRefGoogle Scholar
  8. Lotgering, F.K., Monovalent Copper in Chalcogenide Spinels CuCr2S4, J. Phys. Chem. Solids., 1962, vol. 23., pp. 1153–1158.CrossRefGoogle Scholar
  9. Lotgering, F.K., Ferromagnetism in Spinels: CuCr2S4 and CuCr2Se4, Solid State Commun., 1964, vol. 2, pp. 55–56.CrossRefGoogle Scholar
  10. Lotgering, F. K., and Van Stapele, R. P., Magnetic and Electrical Properties of Copper-Containing Sulfides and Selenides with Spinel Structure, Solid State Commun., 1967, vol. 5, pp. 143–146.CrossRefGoogle Scholar
  11. Lutz, H D. and Okonska-Koziowska, I., X-Ray Investigation of the Solid Solution Zn1 − xCuxCr2S4 with Spinel Structure, Mat. Res. Bull., 1982, vol. 17, pp. 25–28.CrossRefGoogle Scholar
  12. Ovchinnikov, S.G., Variable Valence in Chalcogenide Chromium Spinels, Fiz. Tverd. Tela, 1979, vol. 21, no. 10, pp. 2994–3002.Google Scholar
  13. Raccah P. M., Bouchard R. J., and Wold A., Crystallographic Study of Chromium Spinels, J. Appl. Phys., 1966, vol. 37, pp. 1436–1437.CrossRefGoogle Scholar
  14. Reznitsky, L.Z., Sklyarov, E.V., Piskunova, L.F., and Ushchapovskaya, Z.F., Florensovite Cu(Cr1.5Sb0.5)S4, a New Sulfospinel from the Baikal Region, Zap. Vsesoyuzn. Mineral. O-va, 1989, vol. 118, no. 1, pp. 57–65.Google Scholar
  15. Reznitsky, L.Z., Sklyarov, E.V., and Ushchapovskaya, Z.F., Kalininite ZnCr2S4, a New Natural Sulfospinel, Zap. Vsesoyuzn. Mineral. O-va, 1985, vol. 114, no. 5, pp. 622–627.Google Scholar
  16. Tret’yakov, Yu.D., Belov, K.L., Gordeev, I.V., Koroleva, L.I., Ped’ko, A.V., Saksonov, Yu.G., Alferov, V.A., and Smirnovskaya, E.M., Magnetic Chalcogenide Spinels, in Struktura i svoistva ferritov (Structure and Properties of Ferrites), Minsk: Nauka i Tekhnika, 1974, pp. 12–19.Google Scholar
  17. Val’kov, V.V. and Ovchinnikov, S.G., Phase Transition with Change of Valencó in Chalcogenide Chromium Spinels, Fiz. Tverd. Tela, 1980, vol. 22, no. 11, pp. 3418–3425.Google Scholar
  18. Vasil’ev, E.P., Reznitsky, L.Z., Vishnyakov, V.N. and Nekrasova, E.A., The Slyudyanka Crystalline Complex, Novosibirsk: Nauka, 1981.Google Scholar
  19. Warczewski, J., Kusz, J., Filimonov, D. S., Kessler, Ya. A., Koroleva, L. I., Mikheev, M. G, Odintsov, A. G, Aminov, T. G., Busheva E.V., and Shabunina, G. G. New Antiferromagnetic Semiconductor CuCr1.5Sb0.5S4, J. Magn. Magn. Mat., 1997, vol. 175, pp. 299–303.CrossRefGoogle Scholar
  20. Zajdel, P., Kisiel A., Warczewski, J., Konior, J., Koroleva, L. I., Krok-Kowalski J., Gusin, P., Burattini E., Cinque, G., Grilli, A., and Demin R.V. The Influence of the Concentration of Sb Ions onto the Local Crystal and Electronic Structures of CuCr2−xSbxS4 (x = 0.3, 0.4, 0.5). Studied by XANES and EXAFS Measurements and LAPW Numerical Calculations, J. Alloys Comp., 2005, vol. 401, pp. 145–149.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. Z. Reznitsky
    • 1
    Email author
  • E. V. Sklyarov
    • 1
  • Z. F. Ushchapovskaya
    • 1
  • L. F. Suvorova
    • 2
  • Yu. S. Polekhovsky
    • 3
  • P. Dzerzanovsky
    • 4
  • I. G. Barash
    • 1
  1. 1.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.Faculty of GeologySt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Institute of Geochemistry, Mineralogy, and PetrologyWarsaw UniversityWarsawPoland

Personalised recommendations