Geology of Ore Deposits

, Volume 53, Issue 7, pp 583–590 | Cite as

Oxyphlogopite K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2: A new mineral species of the mica group

  • N. V. Chukanov
  • A. A. Mukhanova
  • R. K. Rastsvetaeva
  • D. I. Belakovsky
  • S. Möckel
  • O. V. Karimova
  • S. N. Britvin
  • S. V. Krivovichev
New Minerals


Oxyphlogopite is a new mica-group mineral with the idealized formula K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2. The holotype material came from a basalt quarry at Mount Rothenberg near Mendig at the Eifel volcanic complex in Rhineland-Palatinate, Germany. The mineral occurs as crystals up to 4 × 4 × 0.2 mm in size encrusting cavity walls in alkali basalt. The associated minerals are nepheline, plagioclase, sanidine, augite, diopside, and magnetite. Its color is dark brown, its streak is brown, and its luster is vitreous. D meas = 3.06(1) g/cm3 (flotation in heavy liquids), and D calc = 3.086 g/cm3. The IR spectrun does not contain bands of OH groups. Oxyphlogopite is biaxial (negative); α = 1.625(3), β = 1.668(1), and γ = 1.669(1); and 2V meas = 16(2)° and 2V calc = 17°. The dispersion is strong; r < ν. The pleochroism is medium; X > Y > Z (brown to dark brown). The chemical composition is as follows (electron microprobe, mean of 5 point analyses, wt %; the ranges are given in parentheses; the H2O was determined using the Alimarin method; the Fe2+/Fe3+ was determined with X-ray emission spectroscopy): Na2O 0.99 (0.89–1.12), K2O 7.52 (7.44–7.58), MgO 14.65 (14.48–14.80), CaO 0.27 ((0.17–0.51), FeO 4.73, Fe2O3 7.25 (the range of the total iron in the form of FeO is 11.09–11.38), Al2O3 14.32 (14.06–14.64), Cr2O3 0.60 (0.45–0.69), SiO2 34.41 (34.03–34.66), TiO2 12.93 (12.69–13.13), F 3.06 (2.59–3.44), H2O 0.14; O=F2 −1.29; 99/58 in total. The empirical formula is (K0.72Na0.14Ca0.02)(Mg1.64Ti0.73Fe 0.30 2+ Fe 0.27 3+ Cr0.04)Σ2.98(Si2.59Al1.27Fe 0.14 3+ O10) O1.20F0.73(OH)0.07. The crystal structure was refined on a single crystal. Oxyphlogopite is monoclinic with space group C2/m; the unit-cell parameters are as follows: a = 5.3165(1), b = 9.2000(2), c = 10.0602(2) Å, β = 100.354(2)°. The presence of Ti results in the strong distortion of octahedron M(2). The strongest lines of the X-ray powder diffraction pattern [d, Å (I, %) [hkl]] are as follows: 9.91(32) [001], 4.53(11) 110], 3.300(100) [003], 3.090(12) [112], 1.895(21) [005], 1.659(12) [−135], 1.527(16) [−206, 060]. The type specimens of oxyphlogopite are deposited at the Fersman Mineralogical Museum in Moscow, Russia; the registration numbers are 3884/2 (holotype) and 3884/1 (cotype).


Nepheline Alkali Basalt Russian Mineralogical Society Trioctahedral Mica Mica Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrianov, V.I., Development of the System of Crystallographic Programs RENTGEN for Computer NORD, SM-4, and ES, Kristallografiya, 1987, vol. 32, no. 1, pp. 228–231.Google Scholar
  2. Brigatti, M.F., Galli, E., and Poppi, L., Effect of Ti Substitution in Biotite-1M Crystal Chemistry, Am. Mineral., 1991, vol. 76, pp. 1174–1183.Google Scholar
  3. Bailey, S.W., Structures of Layer Silicates in: Crystal Structures of Clay Mineral and Their X-Ray Identification, G.W. Brindley and G. Brown, Eds., London: Mineralogical Society, 1980, pp. 1–123.Google Scholar
  4. Brigatti, M.F. and Poppi, L., Crystal Chemistry of Ba-Rich Trioctahedral Micas-1M, Eur. J. Mineral., 1993, vol. 5, pp. 857–871.Google Scholar
  5. Burke, E., A Mass Discreditation of GQN Minerals, Can. Mineral., 2006, vol. 44, pp. 1557–1560.CrossRefGoogle Scholar
  6. Chukanov, N.V., Rosenberg, K.A., Rastsvetaeva, R.K., and Möckelé, S., New Data of Ti-Rich Biotite: A Problem of “Wodanite,” in New Data on Minerals, 2008, no. 43, pp. 72–77.Google Scholar
  7. Cruciani, G. and Zanazzi, P.F., Cation Partitioning and Substitution Mechanisms in 1M Phlogopite; a Crystal Chemical Study, Am. Mineral., 1994, vol. 79, pp. 289–301.Google Scholar
  8. Dymek, R.F., Titanium, Aluminum, and Interlayer Cation Substitutions in Biotite from High-Grade Gneisses, West Greenland, Am. Mineral., 1983, vol. 68, pp. 880–899.Google Scholar
  9. Freudenberg, W., Titanium-Biotite (Wodanite) from the Katzenbuckel, Mitt. Bad. Geol. Landesanst, 1920, vol. 8, no. 2, pp. 319–335.Google Scholar
  10. Greenwood, J.C., Barian-Titanium Micas from Ilha Da Trindade, South Atlantic, Mineral. Mag., 1998, vol. 62, no. 5, pp. 687–695.CrossRefGoogle Scholar
  11. Gianfagna, A., Scordari, F., Mazziotti-Tagliani, S., Ventruti, G., and Ottolini, L., Fluorophologopite from Biancavilla (Mt. Etna, Sicily, Italy): Crystal Structure and Crystal Chemistry of a New P-Dominant Analog of Phlogopite, Am. Mineral., 2007, vol. 92, pp. 1601–1609.CrossRefGoogle Scholar
  12. Hallimond, A.F., On the Chemical Classification of the Mica Group. III. The Molecular Volumes, Mineral. Mag., 1927, no. 116, pp. 195–204.Google Scholar
  13. Hazen, R.M. and Burnham, C.W., The Crystal Structures of the One-Layer-Phlogopite and Annite, Am. Mineral., 1973, vol. 58, pp. 889–900.Google Scholar
  14. Ibhi, A., Nachit, H., and El Abia, H., Titanium and Barium Incorporation into the Phyllosilicate Phases: The Example of Phlogopite-Kinoshitalite Solid Solution, J. Phys. IV, France, 2005, vol. 123, pp. 331–335.CrossRefGoogle Scholar
  15. Kogarko, L.N., Uvarova, Yu.A., Sokolova, E., Hawthorne, F.C., Ottolini, L., and Grice, J.D., Oxykinoshitalite, a New Species of Mica from Fernando De Noronha Island, Pernambuco, Brazil: Occurrence and Crystal Structure, Can. Mineral., 2005, vol. 43, no. 5, pp. 1501–1510.CrossRefGoogle Scholar
  16. Koval, P.V., Esvig, V., and Sapozhnikov, A.N., Coexisting Megacrysts of Titanium Oxybiotite 3T and 3M in Basalt of Shavaryn-Tsarama, Mongolia Dokl. Akad. Nauk SSSR, 1983, vol. 302, no. 2, pp. 430–433.Google Scholar
  17. Kupriyanova, T.A., Filippov, M.N., and Lyamina, O.I., Chemical Bond Effects on Line Intensities in Arsenic X-ray Emission Spectrum, Zh. Strukt. Khimii, 2003, vol. 44, no. 3, pp. 460–471.Google Scholar
  18. Mann, U., Marks, M., and Markl, G., Influence of Oxygen Fugacity on Mineral Compositions in Peralkaline Melts: The Katzenbuckel Volcano, Southwest Germany, Lithos, 2006, vol. 91, nos. (1/4), pp. 262–285.CrossRefGoogle Scholar
  19. Mansker, W.L., Ewing, R.C., and Keil, K., Barian-Titanian Biotites in Nephelinites from Oahu, Hawaii, Am. Mineral., 1979, vol. 64, pp. 156–159.Google Scholar
  20. Mineraly. Spravochnik, T. IV, Vyp. 1 (Minerals, Handbook, Vol. IV, Issue 1), Moscow: Nauka, 1992.Google Scholar
  21. Ohta, T., Takeda, H., and Takeuchi, Y., Mica Polytypism: Similarities in the Crystal Structures of Coexisting 1M and 2M Oxybiotites, Am. Mineral., 1982, vol. 67, pp. 298–310.Google Scholar
  22. Prider, R.T., Some Minerals from the Leucite-Rich Rocks of the West Kimberley Area, Western Australia, Mineral. Mag., 1939, vol. 25, no. 166, pp. 373–387.CrossRefGoogle Scholar
  23. Rosenbusch, H., Elemente der Gesteinslehre, Ed. 3, Stuttgart: Schweizerbart Verlag, 1910.Google Scholar
  24. Rancourt, D.G., Mercier, P.H.J., Cherniak, D.J., Desgreniers, S., Kodama, H., Robert, J.-L., and Murad, E., Mechanisms and Crystal Chemistry of Oxidation of Annite: Resolving the Hydrogen-Loss and Vacancy Reactions, Clays Clay Miner., 2001, vol. 49, no. 6, pp. 455–491.CrossRefGoogle Scholar
  25. Rieder, M., Cavazzini, G., D’yakonov, Yu.S., FrankKamenetsky, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Mueller, G., Neiva A.M.R., Radoslovich, E.W., Robert J-L., Sassi, F.P., Takeda, H., Weiss, Z., and Wones D.R. Nomenclature of the micas, Can. Mineral, 1998, vol. 36., pp. 379–391.Google Scholar
  26. Shaw, C.S.J. and Penczak, R.S., Barium- and Titanium-Rich Biotite and Phlogopite from the Western and Eastern Gabbro, Coldwell Alkaline Complex, Northwestern Ontario, Can. Mineral., 1996, vol. 34, pp. 967–975.Google Scholar
  27. Scordari, F., Ventruri, G., Sabato, A., Bellatreccia, F., Della, Ventura, G., and Pedrazzi, G., Ti-Rich Phlogopite from Mt. Vulture (Potenza, Italy) Investigated by a Multi-analytical Approach, Eur. J. Mineral., 2006, vol. 18, pp. 379–391.CrossRefGoogle Scholar
  28. Thibault, Y., Edgar, A.D., and Lloyd, F.E., Experimental Investigation of Melts from a Carbonatized Phlogopite Lherzolite: Implications for Metasomatism in the Continental Lithospheric Mantle, Am. Mineral., 1992, vol. 77, pp. 784–794.Google Scholar
  29. Ushakova, E.N., Biotity metamorficheskikh porod (Biotites of Metamorphic Rocks), Moscow: Nauka, 1971.Google Scholar
  30. Walker, N. and Stuart, D., An Empirical Method for Correcting Diffractometer Data for Absorption Effects, Acta Cristallogr. A, 1983, vol. 39, no. 2, pp. 158–166.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. V. Chukanov
    • 1
  • A. A. Mukhanova
    • 2
  • R. K. Rastsvetaeva
    • 3
  • D. I. Belakovsky
    • 4
  • S. Möckel
    • 5
  • O. V. Karimova
    • 6
  • S. N. Britvin
    • 7
  • S. V. Krivovichev
    • 7
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  4. 4.Fersman Mineralogical MuseumRussian Academy of SciencesMoscowRussia
  5. 5.Alpha-GeophysikGotthelffriedrichsgrundGermany
  6. 6.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  7. 7.Faculty of GeologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations