Geology of Ore Deposits

, 50:659 | Cite as

Scheme of mineral facies of metamorphic rocks

  • S. A. Bushmin
  • V. A. Glebovitsky


The proposed PT grid of mineral facies of metamorphic rocks, which retains the commonly adopted nomenclature (greenschist, epidote-amphibolite, amphibolite, granulite, glaucophane-schist, and eclogite facies), is based on original calculations and the published calculated and experimental data on mineral equilibria. To validate the facies and subfacies PT boundaries, the mineral equilibria in metapelitic and metabasic rocks have been used.


Chlorite Cordierite Kyanite Sillimanite Andalusite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Ya. Aranovich and R. G. Berman, “Optimized Standard State and Solution Properties of Minerals: II. Comparisons, Predictions, and Applications,” Contrib. Mineral. Petrol. 126, 25–37 (1996).CrossRefGoogle Scholar
  2. 2.
    J. Arnold, R. Powell, and M. Sandiford, “Amphibolites with Staurolite and Other Aluminous Minerals: Calculated Mineral Equilibrium in NCFMASH,” J. Metam. Geol. 18(1), 23–40 (2000).CrossRefGoogle Scholar
  3. 3.
    R. G. Berman, “Thermobarometry Using Multiequilibrium Calculations: A New Technique with Petrologic Applications,” Can. Mineral. 29, 833–855 (1991).Google Scholar
  4. 4.
    R. G. Berman and L. Ya. Aranovich, “Optimized Standard State and Solution Properties of Minerals: I. Model Calibration for Olivine, Orthopyroxene, Cordierite, Garnet, and Ilmenite in the System FeO-MgO-CaO-Al2O3-TiO2-SiO2,” Contrib. Miner. Petrol. 126, 1–24(1996).CrossRefGoogle Scholar
  5. 5.
    S. A. Bushmin, “Facies, Facies Groups of Metacomatism and Ore Specialization of Metamorphic Belts,” in Precambrian Metasomatic Rocks and Their Ore Potential (Nauka, Moscow, 1989), pp. 46–63 [in Russian].Google Scholar
  6. 6.
    S. A. Bushmin, “Metasomatic Rocks in Zones of Regional Metamorphism,” in Geological Survey of Metamorphic and Metacomatic Complexes (VSEGEI, St. Petersburg, 1996), pp. 84–125 [in Russian].Google Scholar
  7. 7.
    C. J. Carson, R. Powell, and G. L. Clarke, “Calculated Mineral Equilibria for Eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: Application to the Pouebo Terrane, Pam Peninsula, New Caledonia,” J. Metam. Geol. 17(1), 9–24 (1999).CrossRefGoogle Scholar
  8. 8.
    N. L. Dobretsov, Glaucophane-Schist and Eclogite-Glaucophane-Schist Complexes of the USSR (Nauka, Novosibirsk, 1974) [in Russian].Google Scholar
  9. 9.
    N. L. Dobretsov, V. S. Sobolev, N. V. Sobolev, and V. V. Khlestov, Facies of High-Pressure Regional Metamorphism (Nedra, Moscow, 1974) [in Russian].Google Scholar
  10. 10.
    N. L. Dobretsov, V. S. Sobolev, and V. V. Khlestov, Facies of Moderate-Pressure Regional Metamorphism (Nedra, Moscow, 1972) [in Russian].Google Scholar
  11. 11.
    N. L. Dobretsov, V. V. Reverdatto, V. S. Sobolev, et al., Metamorphic Facies (Nauka, Nedra, Moscow, 1970) [in Russian].Google Scholar
  12. 12.
    P. Eskola, “The Mineral Facies of Rocks,” Norsk. Geol. Tidsskr., No. 6, 143–194 (1920).Google Scholar
  13. 13.
    V. V. Fed’kin, Staurolite (Moscow, 1975) [in Russian].Google Scholar
  14. 14.
    W. S. Fyfe, F. J. Turner, and J. Verhoogen, Metamorphic Reactions and Metamorphic Facies (Geol. Soc. Amer. Mem. 73, 1958; Inostrannaya Literatura, Moscow, 1962).Google Scholar
  15. 15.
    V. A. Glebovitsky, Evolution of Metamorphism in Mobile Belts (Nauka, Leningrad, 1973) [in Russian].Google Scholar
  16. 16.
    V. A. Glebovitsky, “Mineral Facies As Criteria for Eastimation of PT Parameters of Metamorphism,” in Thermo- and Barometry of Metamorphic Rocks (Nauka, Leningrad, 1977), pp. 5–39 [in Russian].Google Scholar
  17. 17.
    V. A. Glebovitsky and S. A. Bushmin, “Main Principles of Preparation of Medium- and Large-Scale Maps of Metamorphism,” in Methods of Mapping of Metamorphic Complexes (Nauka, Novosibirsk, 1980), pp. 49–58 [in Russian].Google Scholar
  18. 18.
    M. Guiraud, T. Holland, and R. Powell, “Calculated Mineral Equilibrium in the Greenschist-Blueschist-Eclogite Facies in Na2O-FeO-MgO-Al2O3-SiO2-H2O: Methods, Results, and Geological Applications,” Contrib. Mineral. Petrol. 104, 85–98 (1990).CrossRefGoogle Scholar
  19. 19.
    A. Hietanen, “On the Facies Series in Various Types of Metamorphism,” J. Geol. 75(2), 187–214 (1976).CrossRefGoogle Scholar
  20. 20.
    M. J. Holdaway, “Stability of Andalusite and the Aluminium Silicate Phase Diagram,” Am. J. Sci. 271(2), 97–131 (1971).Google Scholar
  21. 21.
    D. E. Kelsey, R. W. White, T. J. B. Halland, and R. Powell, “Calculated Phase Equilibria in K2O-FeO-Al2O3-SiO2-H2O for Sapphirine-Quartz-Bearing Mineral Assemblages,” J. Metam. Geol. 22, 559–578 (2004).CrossRefGoogle Scholar
  22. 22.
    D. E. Kelsey, R. W. White, and R. Powell, “Orthopyroxene-Sillimanite-Quartz Assemblages: Distribution, Petrology, Quantitative P-T-X Paths,” J. Metam. Geol. 21, 439–453 (2003).CrossRefGoogle Scholar
  23. 23.
    K. B. Kepezhinskas, “Subfacies of Middle Temperature Metapelites,” in Thermodynamic Regime of Metamorphism (Nauka, Leningrad, 1976), pp. 139–147 [in Russian].Google Scholar
  24. 24.
    S. P. Korikovsky, “Facies and Subfacies of Regional Metamorphism in CaO-Poor Rocks,” in Thermodynamic Regime of Metamorphism (Nauka, Leningrad, 1976), pp. 127–139 [in Russian].Google Scholar
  25. 25.
    S. P. Korikovsky, Metamorphic Facies of Metapelites (Nauka, Moscow, 1979) [in Russian].Google Scholar
  26. 26.
    D. S. Korzhinsky, Factors of Mineral Equilibria and Mineralogical Depth Facies (Akad. Nauk SSSR, Moscow, 1940) [in Russian].Google Scholar
  27. 27.
    G. G. Lepezin, Metamorphism of Epidote-Amphibolite Facies with Reference to the Tongulak Complex (Altai Mountains) (Nauka, Moscow, 1972) [in Russian].Google Scholar
  28. 28.
    G. G. Lepezin, Petrological Basis of Studies and Mapping of Metamorphic Complexes in Foldbelts (SNIIGG, Novosibirsk, 2002) [in Russian].Google Scholar
  29. 29.
    I. I. Likhanov, Doctoral Dissertation in Geology and Mineralogy (Novosibirsk, 2003).Google Scholar
  30. 30.
    E. M. Mahar, J. M. Baker, R. Powell, et al., “The Effect of Mn on Mineral Stability in Metapelites,” J. Metam. Geol. 15(2), 223–238 (1997).CrossRefGoogle Scholar
  31. 31.
    A. A. Marakushev, Mineral Facies of Metamorphic and Metasomatic Rocks (Nauka, Moscow, 1965) [in Russian].Google Scholar
  32. 32.
    A. A. Marakushev, Petrology of Metamorphic Rocks (Moscow State Univ., Moscow, 1973) [in Russian].Google Scholar
  33. 33.
    P. McDade and S. L. Harley, “A Petrogenetic Grid for Aluminous Granulite Facies Metapelites in the KFMASH System,” J. Metam. Geol. 19, 45–59 (2001).CrossRefGoogle Scholar
  34. 34.
    L. L. Perchuk, Thermodynamic Regime of Deep Petrogenesis (Nauka, Moscow, 1973) [in Russian].Google Scholar
  35. 35.
    K. K. Podlessky, “Hypersthene in Assemblage with Sillimanite and Quartz As an Indicator of Metamorphic Conditions,” Dokl. Akad. Nauk 389(1), 84–87 (2003) [Dokl. Earth Sci. 389 (2), 248–251 (2003)].Google Scholar
  36. 36.
    R. Powell and T. Holland, “Calculated Mineral Equilibria in the Pelite System, KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O),” Am. Mineral. 75, 367–380 (1990).Google Scholar
  37. 37.
    R. Powell, T. Holland, and B. Worley, “Calculating Phase Diagrams Involving Solid Solutions Via Non-Linear Equations, with Examples Using THERMOCALC,” J. Metam. Geol. 16(4), 577–588 (1998).CrossRefGoogle Scholar
  38. 38.
    Yu. M. Sokolov, S. I. Glebovitsky, and S. I. Turchenko, “Genetic Classification of Mineral Deposits of Metamorphic Type,” Sov. Geol., No. 2, 52–67 (1975).Google Scholar
  39. 39.
    F. S. Spear, Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths (Miner. Soc. Am., Washington, DC, 1993).Google Scholar
  40. 40.
    D. K. Tinkham, C. A. Zuluaga, and H. H. Stowell, “Metapelite Phase Equilibria Modeling in MnNCKFMASH: The Effect of Variable Al2O3 and MgO/(MgO + FeO) on Mineral Stability,” Geol. Materials Res. 3(1), 1–42 (2001).Google Scholar
  41. 41.
    C. J. Wei, R. Powell, and G. L. Clarke, “Calculated Phase Equilibria for Low- and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems,” J. Metam. Geol. 22, 495–508 (2004).CrossRefGoogle Scholar
  42. 42.
    R. W. White, R. Powell, and G. L. Clarke, “The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block, Central Australia: Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3,” J. Metam. Geol. 20(1), 41–55 (2002).CrossRefGoogle Scholar
  43. 43.
    R. W. White, R. Powell, T. J. B. Holland, and B. A. Worley, “The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2-Fe2O3,” J. Metam. Geol. 18(5), 497–511 (2000).CrossRefGoogle Scholar
  44. 44.
    T. M. Will, R. Powell, T. Holland, and M. Guiraud, “Calculated Greenschist Facies Mineral Equilibria in the System CaO-FeO-MgO-Al2O3-SiO2-CO2-H2O,” Contrib. Mineral. Petrol. 104, 353–368 (1990).CrossRefGoogle Scholar
  45. 45.
    H. G. F. Winkler, Die Genese der Metamorphen Gesteine, 2nd Ed. (Springer, Berlin, 1967; Mir, Moscow, 1969) [in Russian].Google Scholar
  46. 46.
    B. Worley and R. Powell, “Singularities in NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O),” J. Metam. Geol. 16(2), 169–188 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations