Geology of Ore Deposits

, Volume 50, Issue 7, pp 556–564

Karchevskyite, [Mg18Al9(OH)54][Sr2(CO3,PO4)9(H2O,H3O)11], a new mineral species of the layered double hydroxide family

  • S. N. Britvin
  • N. V. Chukanov
  • G. K. Bekenova
  • M. A. Yagovkina
  • A. V. Antonov
  • A. N. Bogdanova
  • N. I. Krasnova
New Minerals

Abstract

Karchevskyite, a new mineral related to the family of layered double hydroxides (LDHs), has been found in the Iron open pit at the Kovdor carbonatite massif, Kola Peninsula, Russia. The mineral occurs as spherulites of up to 1.5 mm in diameter composed of thin, curved lamellae. Dolomite, magnetite, quintinite-3T, strontium carbonate, and fluorapatite are associated minerals. Karchevskyite is white in aggregates and colorless in separate platelets. Its luster is vitreous with a pearly shine on the cleavage surface. The new mineral is nonfluorescent. The Mohs hardness is 2. The cleavage is eminent (micalike), parallel to {001}. The measured density is 2.21(2) g/cm3, and the calculated value is 2.18(1) g/cm3. Karchevskyite is colorless and nonpleochroic in immersion liquids. It is uniaxial, negative, ω = 1.542(2), and ɛ = 1.534(2). The chemical composition (electron microprobe, average of ten point analyses, standard deviation in parentheses, wt %) is as follows: 29.7(1.1) MgO, 18.3(0.7) Al2O3, 7.4(0.4) SrO, 0.2(0.1) CaO, 1.3(0.2) P2O5, 14.5(0.4) CO2, and 28.6 H2O (estimated by difference); the total is 100. The empirical formula calculated on the basis of nine Al atoms is Mg18.00Al9.00(OH)54.00(Sr1.79Mg0.48Ca0.09)2.36 (Ca3)8.26(PO4)0.46(H2O)6.54(H3O)4.18. The idealized formula is [Mg18Al9(OH)54][Sr2(CO3, PO4)9(H2O, H3O)11]. The new mineral slowly dissolves in 10% HCl with weak effervescence. Karchevskyite is trigonal; possible space groups are P3, P3, P\( \overline 3 \) 1m, P31m, P312, P312, P3m1, or P3m1; unit-cell dimensions are a = 16.055(6), c = 25.66(1) Å, V = 5728(7) Å3, Z = 3. The strongest reflections in the X-ray powder diffraction pattern [d, (I, %)(hkl)] are: 8.52(10)(003), 6.41(4)(004), 5.13(3)(005), 4.27(6)(006), 3.665(9)(007), 3.547(9)(107), 3.081(6)(315). Wavenumbers of absorption bands in the infrared spectrum of the new mineral are (cm−1; s is shoulder): 3470, 3420s, 3035, 2960s, 1650, 1426, 1366, 1024, 937, 860, 779, 678, 615s, 553, 449, 386. Results of thermogravimetric analysis: total weight loss is 42.0 wt %, with three stages of loss: 12.2%, maximum rate at 230°C; 6.1%, maximum rate at 320°C; and 23.7%, maximum rate at 440°C. Karchevskyite is a late-stage hydrothermal mineral. The mineral is named in memory of Russian mineralogist Pavel Karchevsky (1976–2002), who made a significant contribution to the study of carbonatites. The type material of karchevskyite is deposited at the Mineralogical Museum, Division of Mineralogy, St. Petersburg State University, and the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bellotto, B. Rebours, O. Clause, et al., “A Reexamination of Hydrotalcite Chemistry,” J. Phys. Chem. 100, 8527–8534 (1996).CrossRefGoogle Scholar
  2. 2.
    S. N. Britvin, Ya. A. Pakhomovskii, A. N. Bogdanova, and V. I. Skba, “Strontiowhitlockite, Sr9Mg(PO3OH)(PO4)6, a New Mineral Species from the Kovdor Deposit, Kola Peninsula, USSR,” Can. Mineral. 29, 87–93 (1991).Google Scholar
  3. 3.
    S. N. Britvin, G. Ferraris, G. Ivaldi, et al., “Cattite, Mg3(PO4)2 · 22H2O, a New Mineral from Zhelezny Mine (Kovdor Massif, Kola Peninsula, Russia),” N. Jb. Miner. Monatshefte, No. 4, 160–168 (2002).Google Scholar
  4. 4.
    A. G. Bulakh and V. V. Ivanikov, Mineralogy and Petrology of Carbonatites (Leningrad State Univ., Leningrad, 1982) [in Russian].Google Scholar
  5. 5.
    G. Chao and R. A. Gaylt, “Quintinite-2H, Quintinite-3T, Charmarite-2H, Charmarite-3T and Caresite-3T, a New Group of Carbonate Minerals Related to the Hydrotalcite-Manasseite Group,” Can. Mineral. 35, 1541–1549 (1997).Google Scholar
  6. 6.
    M. J. Hermamdez-Moreno, M. A. Ulbarri, J. L. Rendon, and C. J. Serna, “IR Characteristics of Hydrotalcite-Like Compounds,” Phys. Chem. Miner. 12, 34–38 (1985).Google Scholar
  7. 7.
    P. I. Karchevsky, Sulfide, Strontium, and Rare Earth Mineralization of Phoscorite and Carbonatite in the Tur’in Massiv (Russia) and the Lyulekop Deposits (South Africa Republic) (Dom Kolo, St. Petersburg, 2005) [in Russian].Google Scholar
  8. 8.
    P. I. Karchevsky and J. Moutte, “The Phoscorite-Carbonatite Complex of Vuoriyarvi, Northern Karelia,” in Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province, Ed. by F. Wall and A. N. Zaitsev (Mineral. Soc. Great Britain, London, 2004), pp. 163–200.Google Scholar
  9. 9.
    A. I. Khan and D. O’Hare, “Intercalation Chemistry of Layered Double Hydroxides: Recent Developments and Applications,” J. Mater. Chem. 12, 3191–3198 (2002).CrossRefGoogle Scholar
  10. 10.
    J. T. Kloprogge, D. Wharton, L. Hickey, and R. L. Frost, “Infrared and Raman Study of Interlayer Anions CO32−, NO3, SO4 and ClO4 in Mg/Al Hydrotalcite,” Am. Mineral. 87, 623–629 (2002).Google Scholar
  11. 11.
    N. I. Krasnova, “The Kovdor Phlogopite Deposit, Kola Peninsula, Russia,” Can. Mineral. 39, 33–44 (2001).CrossRefGoogle Scholar
  12. 12.
    A. A. Kukharenko, M. P. Orlova, A. G. Bulakh, et al., Caledonian Complex of Ultramafic Alkaline Rocks and Carbonatite of the Kola Peninsula and Northern Karelia. Geology, Petrology, Mineralogy, Geochemistry (Nedra, Moscow, 1965) [in Russian].Google Scholar
  13. 13.
    J. A. Mandarino, “The Gladstone-Dale Relationship. III. Some General Applications,” Can. Mineral. 17, 71–76 (1979).Google Scholar
  14. 14.
    S. Miyata, “The Synthesis of Hydrotalcite-Like Compounds and Their Structures and Physical-Chemical Properties: I. the Systems Mg2+-Al3+-NO3, Mg2+-Al3+-ClO, Mg2+-Al3+-ClO4, Ni2+-Al3+-Cl, and Zn2+-Al3+-Cl,” Clays Clay Mineral. 23, 369–375 (1975).CrossRefGoogle Scholar
  15. 15.
    S. Miyata and T. Kimura, “Synthesis of New Hydrotalcite-Like Compounds and Their Physical-Chemical Properties,” Chem. Lett., 843–848 (1973).Google Scholar
  16. 16.
    S. Miyata and A. Okada, “Synthesis of Hydrotalcite-Like Compounds and Their Physico-Chemical Properties — the System Mg2+-Al3+-SO42− and Mg2+-Al3+-CrO42−,” Clays Clay Miner. 25, 14–18 (1977).CrossRefGoogle Scholar
  17. 17.
    P. B. Moore, “Wermlandite, a New Mineral from Langban, Sweden,” Lithos 4, 213–217 (1971).CrossRefGoogle Scholar
  18. 18.
    G. Moreau, L. Heln, J. Purans, and A. E. Merbach, “Structural Investigation of Aqueous Eu2+ Ion: Comparison with Sr2+ Using the XAFS Technique,” J. Phys. Chem. A106, 3034–3043 (2002).Google Scholar
  19. 19.
    F. Prinetto, G. Ghiotti, P. Graffin, and D. Tichit, “Synthesis and Characterization of Sol-Gel Mg/Al and Ni/Al Layered Double Hydroxides and Comparison with Co-Precipitated Samples,” Microporous and Mesoporous Mater. 39, 229–247 (2000).CrossRefGoogle Scholar
  20. 20.
    F. Rey, V. Fornes, and J. M. Rojo, “Thermal Decomposition of Hydrotalcites. An Infrared and Nuclear Magnetic Resonance Spectroscopic Study,” J. Chem. Soc. Faraday Trans. 88, 2233–2238 (1992).CrossRefGoogle Scholar
  21. 21.
    J. S. Ricci, R. C. Stevens, R. K. McMullan, and W. T. Klooster, “Structure of Strontium Hydroxide Octahydrate, Sr(OH)2 · 8H2O, at 20, 100 and 200 K from Neutron Diffraction,” Acta Cryst. B61, 381–386 (2005).Google Scholar
  22. 22.
    O. M. Rimskaya-Korsakova and N. I. Krasnova, Geology of Mineral Deposits in the Kovdor Massif (St. Petersburg State Univ., St. Petersburg, 2002) [in Russian].Google Scholar
  23. 23.
    J. Rius and R. Allmann, “Structure of Wermlandites, [Mg7(Al, Fe)2(OH)18]2+[Ca(H2O)62SO46H2O]2−,” Fortschritt. Miner. 56, 113–114 (1978).Google Scholar
  24. 24.
    J. Rius and R. Allmann, “The Superstructure of the Double Layer Mineral Wermlandite [Mg7(Al0.57, Fe0.433)(OH)18]2+ [(Ca0.6, Mg0.4)(SO4)2(H2O)12]2−,” Z. Kristallogr. 168, 133–144 (1984).Google Scholar
  25. 25.
    J. Rius and F. Plana, “Contribution to the Superstructure Resolution of the Double Layer Mineral Motukoreaite,” N. Jb. Miner. Monatshefte, No. 6, 263–272 (1986).Google Scholar
  26. 26.
    K. A. Rodgers, J. E. Chisholm, R. J. Davis, and C. S. Nelson, “Motukoreaite, a New Hydrated Carbonate, Sulfate, and Hydroxide of Magnesium and Aluminum from Auckland, New Zealand,” Mineral. Mag. 41, 389–390 (1977).CrossRefGoogle Scholar
  27. 27.
    J. C. A. A. Roelofs, J. A. van Bokhoven, A. Jos Van Dillen, et al., “The Thermal Decomposition of Mg/Al Hydrotalcites: Effects of Interlayer Anions and Characteristics of the Final Structure,” Chem. Eur. J. 8, 5571–5579 (2000).CrossRefGoogle Scholar
  28. 28.
    V. S. Samoilov, Carbonatites. Facies and Formation Conditions (Nauka, Moscow, 1977) [in Russian].Google Scholar
  29. 29.
    H. G. Smith, “The Crystal Structure of Strontium Hydroxide Octahydrate, Sr(OH)2(H2O)8,” Acta Crystallogr. 6, 604–609 (1953).CrossRefGoogle Scholar
  30. 30.
    M. Ya. Somina, Dolomite and Ankerite Carbonatites in East Siberia (Nedra, Moscow, 1975) [in Russian].Google Scholar
  31. 31.
    Ts. Stanimirova, N. Piperov, N. Petrova, and G. Kirov, “Thermal Evolution of Mg-Al-CO3 Hydrotalcites,” Clay Mineral. 39, 177–191 (2004).CrossRefGoogle Scholar
  32. 32.
    H. Strunz and E. H. Nickel, Strunz Mineralogical Tables (Schweizerbart, Stuttgart, 2001).Google Scholar
  33. 33.
    Phosphorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province, Ed. by F. Wall and A. N. Zaitsev (Mineral. Soc. Great Britain, London, 2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. N. Britvin
    • 1
  • N. V. Chukanov
    • 2
  • G. K. Bekenova
    • 3
  • M. A. Yagovkina
    • 4
  • A. V. Antonov
    • 5
  • A. N. Bogdanova
    • 6
  • N. I. Krasnova
    • 1
  1. 1.Faculty of GeologySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Satpaev Institute of GeologyAlmatyKazakhstan
  4. 4.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  5. 5.Center of Isotopic StudiesRussian Geological Research InstituteSt. PetersburgRussia
  6. 6.Geological Institute, Kola Science CenterRussian Academy of SciencesApatityRussia

Personalised recommendations