Geology of Ore Deposits

, Volume 49, Issue 8, pp 827–834 | Cite as

Crystal chemistry of natural and synthetic lead oxyhalides. Part I. Crystal structure of Pb13O10Cl6

Article

Abstract

Crystals of lead oxychloride Pb13O10Cl6 have been synthesized on the basis of high-temperature solid-state reactions. The Pb13O10Cl6 structure was studied using X-ray single-crystal diffraction analysis. The compound is monoclinic, and the space group is C2/c; the unit-cell dimensions are a = 16.1699(14), b = 7.0086(6), c = 23.578(2) Å, β = 97.75°, and V = 2647.6(4) Å3. The structure has been solved by direct methods and refined to R1 = 0.0505 for 2671 observed unique reflections. The structure is a 3D framework consisting of OPb4 tetrahedrons. Chlorine atoms are located in the framework channels. The structure contains seven symmetrically independent Pb atoms, which are coordinated by 2 to 4 O2− and 2 to 4 Cl anions. The synthesized compound is compared with other natural and synthetic lead oxyhalides.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. E. Brese and M. O’Keeffe, “Bond-Valence Parameters for Solids,” Acta Crystallogr. 47, 192–197 (1991).CrossRefGoogle Scholar
  2. 2.
    R. Edwards, R. D. Gillard, P. A. Williams, and A. M. Pollard, “Studies of Secondary Mineral Formation in the PbO-H2O-HCl System,” Mineral. Mag. 56, 53–65 (1992).CrossRefGoogle Scholar
  3. 3.
    O. Gabrielson, “The Crystal Structure of Mendipite, Pb3O2Cl2,” Arkiv. Miner. Geol. 2, 299–304 (1957).Google Scholar
  4. 4.
    P. Gabrielson, A. Parwel, and F. E. Wickman, “Blixite, a New Lead-Oxyhalide Mineral from Langban,” Arkiv Miner. Geol 2, 411–415 (1958).Google Scholar
  5. 5.
    D. A. Hirschler, L. F. Gilbert, F. W. Lamb, and L. M. Niebylski, “Particulate Lead Compounds in Automobile Exhaust Gas,” Ind. Eng. Chem. 49, 1131–1142 (1957).CrossRefGoogle Scholar
  6. 6.
    M. Kiyama, K. Murakami, T. Takada, et al., “Formation and Solubility of Basic Lead Chlorides at Different pH Values,” Chem. Lett., 23–28 (1976).Google Scholar
  7. 7.
    S. V. Krivovichev and I. D. Brown, “Are the Compressive Effects of Encapsulation an Artifact of the Bond Valence Parameters?,” Zschr. Kristallogr. 216, 245–247 (2001).CrossRefGoogle Scholar
  8. 8.
    S. V. Krivovichev and P. C. Burns, “Crystal Chemistry of Lead Oxide Chlorides. I. Crystal Structures of Synthetic Mendipite, Pb3O2Cl2, and Synthetic Damaraite, Pb3O2(OH)Cl,” Eur. J. Mineral. 13, 801–809 (2001).CrossRefGoogle Scholar
  9. 9.
    S. V. Krivovichev and P. C. Burns, “Crystal Chemistry of Lead Oxide Chlorides. II. Crystal Structure of Pb7O4(OH)4Cl2,” Eur. J. Mineral. 14, 135–139 (2002a).Google Scholar
  10. 10.
    S. V. Krivovicehv and P. C. Burns, “Crystal Structure of Pb10O7(OH)2F2(SO4) and Crystal Chemistry of Lead Oxysulfate Minerals and Inorganic Compounds,” Zschr. Kristallogr. 217, 451–459 (2002b).CrossRefGoogle Scholar
  11. 11.
    S. V. Krivovichev and P. C. Burns, “Chains of Edge-Sharing OPb4 Tetrahedral in the Structure of Pb4O(VO4)2 and in Related Minerals and Inorganic Compounds,” Can. Mineral. 41, (2003).Google Scholar
  12. 12.
    S. V. Krivovichev and P. C. Burns, “The Crystal Structure of Pb8O5(OH)2Cl4, a Synthetic Analogue of Blixite?,” Can. Mineral. 44, 515–522 (2006).CrossRefGoogle Scholar
  13. 13.
    S. V. Krivovichev and S. K. Filatov, Crystal Chemistry of Minerals and Inorganic Compounds with Complexes of Anion-Centered Tetrahedrons (St. Petersburg State Univ., St. Petersburg, 2001) [in Russian].Google Scholar
  14. 14.
    S. V. Krivovichev, S. K. Filatov, and T. F. Semenova, “On the Systematics and Description of Polyions of Linked Polyhedra,” Zschr. Kristallogr. 212, 411–417 (1997).CrossRefGoogle Scholar
  15. 15.
    S. V. Krivovichev, O. I. Siidra, E. V. Nazarchuk, et al., “Exceptional Topological Complexity of Lead Oxide Blocks in Pb31O22X18 (X = Br,Cl),” Inorg. Chem. 45, 3846–3848 (2006).CrossRefGoogle Scholar
  16. 16.
    H. Matsumoto, T. Miyake, and H. Iwahara, “Chloride Ion Conduction in PbCl2-PbO System,” Mater. Res. Bull. 36, 1177–1184 (2001).CrossRefGoogle Scholar
  17. 17.
    P. B. Moore, A. R. Kampf, and P. K. Sen Gupta, “The Crystal Structure of Philolithite, a Trellis-Like Open Framework Based on Cubic Closest Packing of Anions,” Am. Mineral. 85, 810–816 (2000).Google Scholar
  18. 18.
    M. Pasero and D. Vacchiano, “Crystal Structure Refinement of Mendipite, Pb3O2Cl2,” Neues Jahrb. Miner. Mh. 563–569 (2000).Google Scholar
  19. 19.
    H. J. Riebe and H. L. Keller, “Pn13O10Br6, Ein Neuer Vetreter der Blei(II)-Oxidhalogenide,” Zschr. Anogr. Allg. Chem. 571, 139–147 (1989).CrossRefGoogle Scholar
  20. 20.
    K. Sahl, “Zur Kristalstruktur von Lanarkit, Pb2O(SO4),” Zschr. Kristallogr. 132, 99–117 (1970).CrossRefGoogle Scholar
  21. 21.
    M. B. Sigman, Jr. and B. A. Kirgel, “Strongly Birefringent Pb3O2Cl2 Nanobelts,” J. Am. Chem. Soc. 127, 10089–10095 (2005).CrossRefGoogle Scholar
  22. 22.
    O. I. Siidra, S. V. Krivovichev, and V. Depmaier, “Method of Square Cells As a Method for the Description of Structural Topology of Minerals and Inorganic Compounds Derivative from Tetragonal PbO (Litargite),” Vestn. St. Petersb. Gos. Univ., Ser. 7., No. 3, 18–26 (2006).Google Scholar
  23. 23.
    W. H. Smith, “Lead Contamination of the Roadside Ecosystem,” J. Air. Pollut. Control. Ass. 26, 753–766 (1976).Google Scholar
  24. 24.
    L. J. Spencer and E. D. Mountain, “New Lead-Copper Minerals from the Mendip Hills, Somerset, England,” Mineral. Mag. 20, 67–92 (1923).CrossRefGoogle Scholar
  25. 25.
    H. Vincent and G. Perrault, “Structure cristalline de l’oxychlorure de plomb synthétique Pb3O2Cl2,” Bull. Soc. Fr. Minér. Cristallogr. 94, 323–331 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • O. I. Siidra
    • 1
  • S. V. Krivovichev
    • 1
  • W. Depmeier
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute for GeoscienceKiel UniversityKielGermany

Personalised recommendations