Advertisement

Geology of Ore Deposits

, Volume 49, Issue 7, pp 509–513 | Cite as

Zinclipscombite, ZnFe 2 3+ (PO4)2(OH)2, a new mineral species

  • N. V. Chukanov
  • I. V. Pekov
  • S. Möckel
  • A. E. Zadov
  • V. T. Dubinchuk
Article

Abstract

Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm−1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ɛ = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.

Keywords

Barite Quadrupole Splitting Mineral Species Bright Green Crystal Chemical Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. B. Castor and G. C. Ferdock, Minerals of Nevada (Nevada Bureau Mines and Geol. Spec. Publ., 2004).Google Scholar
  2. 2.
    F. Čech, K. Paděra, and P. Povondra, “Lipscombite from Pegmatites at Otov Near Domažlice (Bohemia, Czechoslovakia),” Acta Univ. Carolinae Geol., No. 3, 171–191 (1961).Google Scholar
  3. 3.
    M. A. Gheith, “Lipsocombite, a New Synthetic ‘Iron Lazulite,’” Am. Mineral. 38, 612–638 (1953).Google Scholar
  4. 4.
    M. L. Lindberg, “Manganoan Lipsombite from the Sapucaia Pegmatite Mine, Minas Gerais, Brazil. First Occurrence of Lipsocombite in Nature,” Am. Mineral. 47, 353–359 (1962).Google Scholar
  5. 5.
    J. A. Mandarino, “The Gladstone-Dale Relationship: Part IV. The Compatibility Concept and Its Application,” Can. Mineral. 19, 441–450 (1981).Google Scholar
  6. 6.
    J. A. Mandarino and M. Back, Fleischer’s Glossary of Mineral Species (Mineral Rec. Inc., Tucson, 2004).Google Scholar
  7. 7.
    J. Staněk, “Studium sekudárních fosfát ů železa a mangany z pegmatite od Cyrilova,” Folia (Geologia) 12(9), 25–48 (1971).Google Scholar
  8. 8.
    I. Vencato, E. Mattievich, and Y. P. Mascarenhas, “Crystal Structure of Synthetic Lipscombite: A Redetermination,” Am. Mineral. 74, 456–460 (1989).Google Scholar
  9. 9.
    R. Vochten and E. de Grave, “Crystallographic, Mössbauer, Electrokinetic Study of Synthetic Lipscombite,” Phys. Chem. Miner. 7, 197–203 (1981).CrossRefGoogle Scholar
  10. 10.
    R. Vochten, P. van Aker, and E. de Grave, “Mössbauer, Electrokinetic and Refined Lattice Parameters Study of Synthetic Manganoan Lipscombite,” Phys. Chem. Miner. 9, 263–268 (1983).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. V. Chukanov
    • 1
  • I. V. Pekov
    • 2
  • S. Möckel
    • 3
  • A. E. Zadov
    • 4
  • V. T. Dubinchuk
    • 5
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Faculty of GeologyMoscow State UniversityVorob’evy goryRussia
  3. 3.MIKON Mineralienkontor GmbHBurkersdorfGermany
  4. 4.NPO RegeneratorMoscowRussia
  5. 5.All-Russia Institute of Mineral ResourcesMoscowRussia

Personalised recommendations