Advertisement

Russian Journal of Organic Chemistry

, Volume 54, Issue 10, pp 1453–1462 | Cite as

Quantum Chemical Study of Addition–Elimination Reactions of Dimethyl Carbonate with Methylamine

  • A. Ya. Samuilov
  • D. R. Alekbaev
  • Ya. D. SamuilovEmail author
Article
  • 15 Downloads

Abstract

The mechanisms of noncatalytic and autocatalytic addition–elimination reactions of dimethyl carbonate with methylamine have been studied in terms of wB97XD/6-311++G(df,p), M06/6-311++G(df,p), and PBE0/6-311++G(df,p) quantum chemical methods, and thermodynamic and activation parameters of these reactions have been calculated. The rate-determining stage is the formation of tetrahedral carbon intermediate. The addition–elimination mechanism is preferred over the autocatalytic SN2 mechanism determined by enhanced donor–acceptor and acid–base properties of amine complexes with alcohol associates in comparison to amines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Chemistry of Amides, Zabicky, J., Ed., London: Interscience, 1970.Google Scholar
  2. 2.
    Pan, W.Ch., Lin, Ch.-H., and Dai, Sh.A., Polym. Chem., 2014, vol. 52, no. 19, p. 2781.CrossRefGoogle Scholar
  3. 3.
    Pan, W.Ch., Liao, K., Lin, Ch.-H., and Dai, Sh.A., J. Polym. Res., 2015, vol. 22, no. 6, p. 114.CrossRefGoogle Scholar
  4. 4.
    Ma, Sh., Liu, Ch., Sablong, R.J., Noordover, B.A.J., Hensen, E.J.M., van Benthem, R.A.T.M., and Koning, C.E., ACS Catal., 2016, vol. 6, no. 10, p. 6883.CrossRefGoogle Scholar
  5. 5.
    Grego, S., Aricò, F., and Tundo, P., Org. Process Res. Dev., 2013, vol. 17, no. 4, p. 679.CrossRefGoogle Scholar
  6. 6.
    De Angelis, A., Bosetti, A., Millini, R., and Perego, C., Chemistry beyond Chlorine, Tundo, P., He, L.-N., Lokteva, E., and Mota, C., Eds., New York: Springer, 2016, p. 171.Google Scholar
  7. 7.
    Wang, P., Liu, Sh., and Deng, Y., Chin. J. Chem., 2017, vol. 35, no. 6, p. 821.CrossRefGoogle Scholar
  8. 8.
    Huang, Sh., Yan, B., Wang, Sh., and Ma, X., Chem. Soc. Rev., 2015, vol. 44, no. 10, p. 3079.Google Scholar
  9. 9.
    Pyo, S.-H., Park, J.H., Chang, T.-S., and Hatti-Kaul, R., Curr. Opin. Green Sustainable Chem., 2017, vol. 5, p. 61CrossRefGoogle Scholar
  10. 10.
    Samuilov, A.Y., Balabanova, F.B., and Samuilov, Y.D., Comput. Theor. Chem., 2014, vol. 1049, p. 7.CrossRefGoogle Scholar
  11. 11.
    Samuilov, A.Ya., Balabanova, F.B., and Samuilov, Ya.D., Comput. Theor. Chem., 2015, vol. 1067, p. 33CrossRefGoogle Scholar
  12. 12.
    Baba, T., Kobayashi, A., Kawanami, Y., Inazu, K., Ishikawa, A., Echizenn, T., Murai, K., Aso, S., and Inomata, M., Green Chem., 2005, vol. 7, no. 3, p. 159.CrossRefGoogle Scholar
  13. 13.
    Li, F., Wang, X., Li, H., Wang, S., Xue, W., and Wang, Y., Catal. Lett., 2017, vol. 147, no. 6, p. 1478.CrossRefGoogle Scholar
  14. 14.
    Fukui, K., Theory of Orientation and Stereoselection, Berlin: Springer, 1975.CrossRefGoogle Scholar
  15. 15.
    Rauk, A., Orbital Interaction Theory of Organic Chemistry, New York: Wiley, 2001.Google Scholar
  16. 16.
    Anh, N.T., Frontier Orbitals. A Practical Manual, Chichester: Wiley, 2007.CrossRefGoogle Scholar
  17. 17.
    Baek, S.J., Choi, K.-W., and Choi, Y.S., J. Chem. Phys., 2003, vol. 118, no. 24, p. 11 040.Google Scholar
  18. 18.
    Jaramillo, P., Domingo, L.R., Chamorro, E., and Pérez, P., J. Mol. Struct.: THEOCHEM, 2008, vol. 865, nos. 1–3, p. 68CrossRefGoogle Scholar
  19. 19.
    McGlynn, S.P. and Meeks, J.L., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, no. 2, p. 85CrossRefGoogle Scholar
  20. 20.
    Dai, Z., Gao, Sh., Wang, J., and Mo, Y., J. Chem. Phys., 2014, vol. 141, no. 14, article no. 144 306–1.Google Scholar
  21. 21.
    Shishenin, S.A., Sokolov, V.V., and Grishin, N.N., Zh. Tekh. Fiz., 1988, vol. 58, no. 8, p. 1578.Google Scholar
  22. 22.
    Martrenchart, S., Gregoire, G., Dedonder-Lardeux, C., Jouvet, C., and Solgadi, D., PhysChemComm, 1999, vol. 2, no. 4, p. 15CrossRefGoogle Scholar
  23. 23.
    Radisic, D., Xu, S.J., and Bowen, K.N., Chem. Phys. Lett., 2002, vol. 354, nos. 1–2, p. 9.CrossRefGoogle Scholar
  24. 24.
    Bartmess, J.E., Scott, J.A., and McIver, R.T., J. Am. Chem. Soc., 1979, vol. 101, no. 20, p. 6046.CrossRefGoogle Scholar
  25. 25.
    Hunter, E.P. and Lias, S.G., J. Phys. Chem. Ref. Data, 1998, vol. 27, no. 3, p. 413.CrossRefGoogle Scholar
  26. 26.
    Berlin, P.A., Tiger, R.P., Filippova, I.S., Levina, M.A., Dzhaparidze, N.N., Kartvelishvili, T.M., Katsarava, R.D., and Entelis, S.G., Zh. Obshch. Khim., 1990, vol. 60, no. 9, p. 2140.Google Scholar
  27. 27.
    Gordon, M., Miller, J.G., and Day, A.R., J. Am. Chem. Soc., 1949, vol. 71, no. 4, p. 1245.CrossRefGoogle Scholar
  28. 28.
    Chai, J.-D. and Head-Gordon, M., Phys. Chem. Chem. Phys., 2008, vol. 10, no. 44, p. 6615.CrossRefGoogle Scholar
  29. 29.
    Zhao, Y. and Truhlar, D., Theor. Chem. Acc., 2008, vol. 120, nos. 1–3, p. 215.CrossRefGoogle Scholar
  30. 30.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, p. 6158.CrossRefGoogle Scholar
  31. 31.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision A.01, Wallingford CT: Gaussian, 2009.Google Scholar
  32. 32.
    Carroll, F.A., Perspectives on Structure and Mechanism in Organic Chemistry, Hoboken: Wiley, 2010, 2nd ed.Google Scholar
  33. 33.
    Maksić, Z.B., Kovačević, B., and Vianello, R., Chem. Rev., 2012, vol. 112, no. 10, p. 5240.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Ya. Samuilov
    • 1
  • D. R. Alekbaev
    • 1
  • Ya. D. Samuilov
    • 1
    Email author
  1. 1.Kazan National Research Technological UniversityKazan, TatarstanRussia

Personalised recommendations