Advertisement

Russian Journal of Organic Chemistry

, Volume 54, Issue 8, pp 1184–1188 | Cite as

Mass Spectra of New Heterocycles. XVII. Main Fragmentation Routes of Molecular Ions of 4-Alkoxy-5-amino-3-methylthiophene-2-carbonitriles under Electron and Chemical Ionization

  • L. V. Klyba
  • N. A. Nedolya
  • E. R. Sanzheeva
  • O. A. Tarasova
Article
  • 7 Downloads

Abstract

For the first time decomposition was investigated of 4-alkoxy-5-amino-3-methylthiophene-2-carbonitriles under the conditions of electronic (70 eV) and chemical (reagent gas methane) ionization. At the electronic ionization the compounds under study [except for 4-(1-ethoxyethoxy) and 4-(ferrocenylmethoxy) derivatives] form stable molecular ions that decompose mainly by the cleavage of an alkyl radical from the alkoxy-substituent. Further fragmentation of the arising ion [M–Alk]+ depends on the substituent nature in the amino group. In the mass spectrum of 4-(ferrocenylmethoxy)-substituted thiophene peaks of the ion [FcCH2]+ and its fragmentation products prevail. In the mass spectra of chemical ionization predominant peaks belong to ions M, [M + H]+ and [M + C2H5]+, and fragment ions are absent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2017, vol. 53, p. 913. doi 10.1134/S1070428017060161CrossRefGoogle Scholar
  2. 2.
    Campaigne, E., Comprehensive Heterocyclic Chemistry, Katritzky, A.R. and Rees, C.W., Eds.,1984, vol. 4, p.863.Google Scholar
  3. 3.
    Russell, R.K. and Press, J.B., Comprehensive Heterocyclic Chemistry II, Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., Eds., 1996, vol. 2, p.679.Google Scholar
  4. 4.
    Schatz, J., Brendgen, T., and Schühle, D., Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., and Taylor, R.J.K., Eds., 2008, vol. 3, p.931.Google Scholar
  5. 5.
    Sperry, J.B. and Wright, D.L., Curr. Opin. Drug Discovery Dev., 2005, vol. 8, p.723.Google Scholar
  6. 6.
    Mishra, R., Jha, K.K., Kumar, S., and Tomer, I., Pharma Chem., 2011, vol. 3, p.38.Google Scholar
  7. 7.
    Gaber, H.M. and Bagley, M.C., Eur. J. Chem., 2011, vol. 2, p.214.CrossRefGoogle Scholar
  8. 8.
    Liu, K.K.-C., Zhu, J.J., Smith, G.L., Yin, M.-J., Bailey, S., Chen, J.H., Hu, Q., Huang, Q., Li, C., Li, Q.J., Marx, M.A., Paderes, G., Richardson, P.F., Sach, N.W., Walls, M., Wells, P.A., and Zou, A., ACS Med. Chem. Lett., 2011, vol. 2, p.809.CrossRefGoogle Scholar
  9. 9.
    AlSaid, M.S., El-Gazzar, M.G., and Ghorab, M.M., Drug Res., 2013, vol. 63, p.263.CrossRefGoogle Scholar
  10. 10.
    Molvi, K.I., Mansuri, M., Sudarsanam, V., Patel, M.M., Andrabi, S.M.A., and Haque, N., J. Enzym. Inhib. Med. Chem., 2008, vol. 23, p.829.CrossRefGoogle Scholar
  11. 11.
    Khobragade, Y.F., Gupta, M.C., J. Macromol. Sci., Pure Appl. Chem., 1995, vol. 32, p.155.CrossRefGoogle Scholar
  12. 12.
    Hotta, S., Handbook of Organic Conductive Molecules and Polymers, Nalwa, H.S., Ed., Chichester: J. Wiley & Sons, 1997, vol. 2, p.309.Google Scholar
  13. 13.
    Parra, M., Hidalgo, P., and Alderete, J., Liq. Cryst., 2005, vol. 32, p.449.CrossRefGoogle Scholar
  14. 14.
    Wu, L.-H., Wang, Y.-C., and Hsu, C.-S., Liq. Cryst., 2001, vol. 27, p. 1503.CrossRefGoogle Scholar
  15. 15.
    Yeap, G.-Y., Hng, T.-C., Takeuchi, D., Osakada, K., Mahmood, W.A.K., and Ito, M.M., Mol. Cryst. Liq. Cryst., 2009, vol. 506, p.134.CrossRefGoogle Scholar
  16. 16.
    Hallas, G. and Choi, J.-H., Dyes Pigm., 1999, vol. 42, p.249.CrossRefGoogle Scholar
  17. 17.
    Chirakadze, G.G., Geliashvili, Z.E., and Razmadze, T.O., Russ. J. Org. Chem., 2001, vol. 37, p. 1013. doi 10.1023/A:1012486718889CrossRefGoogle Scholar
  18. 18.
    Sabnis, R.W., Color. Technol., 2016, vol. 132, p.49.CrossRefGoogle Scholar
  19. 19.
    Seferoglu, Z. and Ertan, N., Russ. J. Org. Chem., 2007, vol. 43, p. 1035. doi 10.1134/S1070428007070160CrossRefGoogle Scholar
  20. 20.
    Bochkov, A.Yu., Yarovenko, V.N., Krayushkin, M.M., Chibisova, T.A., Valova, T.M., Barachevskii, V.A., Traven’, V.F., and Beletskaya, I.P., Russ. J. Org. Chem., 2008, vol. 44, p. 595. doi 10.1134/S1070428008040210CrossRefGoogle Scholar
  21. 21.
    Anokhin, M.V., Averin, A.D., Panchenko, S.P., Maloshitskaya, O.A., and Beletskaya, I.P., Russ. J. Org. Chem., 2014, vol. 50, p. 923. doi 10.1134/S107042801407001XCrossRefGoogle Scholar
  22. 22.
    Mishra, A., Ma, C.-Q., and Bäuerle, P., Chem. Rev., 2009, vol. 109, p. 1141.CrossRefGoogle Scholar
  23. 23.
    Takahashi, K., Mazaki, Y., and Kobayashi, K., Phosph., Sulfur Silicon Relat. Elem., 1997, vol. 120, p.421.CrossRefGoogle Scholar
  24. 24.
    Ignatenko, E.A., Shklyaeva, E.V., and Abashev, G.G., Russ. J. Org. Chem., 2013, vol. 49, p. 1379. doi 10.1134/S107042801309025XCrossRefGoogle Scholar
  25. 25.
    Selivanova, D.G., Shklyaeva, E.V., Shavrina, T.V., and Abashev, G.G., Russ. J. Org. Chem., 2014, vol. 50, p. 1213. doi 10.1134/S1070428014080272CrossRefGoogle Scholar
  26. 26.
    Dubonosov, A.D., Tikhomirova, K.S., Shepelenko, E.N., Makarova, N.I., Bren’, Zh.V., Dmitrieva, O.I., Bren’, V.A., and Minkin, V.I., Russ. J. Org. Chem., 2015, vol. 51, p. 1096. doi 10.1134/S1070428015080060CrossRefGoogle Scholar
  27. 27.
    Lebedev, A.T., Mass-spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: BINOM. Laboratoriya Znanii, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Klyba
    • 1
  • N. A. Nedolya
    • 1
  • E. R. Sanzheeva
    • 1
  • O. A. Tarasova
    • 1
  1. 1.Favorskii Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations